Open Access
Issue
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 06001
Number of page(s) 6
Section Health Monitoring and Diagnosis
DOI https://doi.org/10.1051/matecconf/201925506001
Published online 16 January 2019
  1. L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build., vol. 40, no. 3, pp. 394–398, 2008. [CrossRef] [Google Scholar]
  2. Y. Zhu, X. Jin, and Z. Du, “Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal,” Energy Build., vol. 44, no. 1, pp. 7–16, 2012. [CrossRef] [Google Scholar]
  3. D. Dey and B. Dong, “A probabilistic approach to diagnose faults of air handling units in buildings,” Energy Build., vol. 130, pp. 177–187, 2016. [CrossRef] [Google Scholar]
  4. S. H. Cho, H. C. Yang, M. Zaheer-Uddin, and B. C. Ahn, “Transient pattern analysis for fault detection and diagnosis of HVAC systems,” Energy Convers. Manag., vol. 46, no. 18-19, pp. 3103–3116, 2005. [CrossRef] [Google Scholar]
  5. T. Salsbury and R. Diamond, “Fault detection in HVAC systems using model-based feedforward control,” Energy Build., vol. 33, no. 4, pp. 403–415, 2001. [CrossRef] [Google Scholar]
  6. S. R. Shaw, L. K. Norford, D. Luo, and S. B. Leeb, “Detection and diagnosis of HVAC faults via electrical load monitoring,” ASHRAE Trans., vol. 108 PART 1, no. July, p. 468, 2002. [Google Scholar]
  7. L. K. Norford, J. A. Wright, R. A. Buswell, D. Luo, C. J. Klaassen, and A. Suby, “Demonstration of fault detection and diagnosis methods for air-handling units (ASHRAE 1020-RP),” HVAC R Res., vol. 8, no. 1, pp. 41–71, 2002 [CrossRef] [Google Scholar]
  8. S. Wu and J. Q. Sun, “Multi-stage regression linear parametric models of room temperature in office buildings,” Build. Environ., vol. 56, pp. 69–77, 2012. [CrossRef] [Google Scholar]
  9. S. Wang and F. Xiao, “Detection and diagnosis of AHU sensor faults using principal component analysis method,” Energy Convers. Manag., vol. 45, no. 17, pp. 2667–2686, 2004. [CrossRef] [Google Scholar]
  10. S. Katipamula and M. Brambley, “Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems - A Review, Part II,” HVAC&R Res., vol. 11, no. 2, pp. 169–187, 2005 [CrossRef] [Google Scholar]
  11. S. Yin, S. X. Ding, X. Xie, and H. Luo, “IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS A Review on Basic Data-Driven Approaches for,” vol. 61, no. 11, pp. 1–10, 2014. [Google Scholar]
  12. R. Isermann, Fault-Diagnosis Systems. 2006. [CrossRef] [Google Scholar]
  13. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, “Diagnosis and fault-tolerant control, third edition,” Diagnosis Fault-Tolerant Control. Third Ed., pp. 1–695, 2016. [Google Scholar]
  14. R. Sterling, G. Provan, J. Febres, D. O’Sullivan, P. Struss, and M. M. Keane, “Model-based fault detection and diagnosis of air handling units: A comparison of methodologies,” Energy Procedia, vol. 62, no. 0, pp. 686–693, 2014. [CrossRef] [Google Scholar]
  15. J. Schein, S. T. Bushby, N. S. Castro, and J. M. House, “A rule-based fault detection method for air handling units,” Energy Build., vol. 38, no. 12, pp. 1485–1492, 2006. [CrossRef] [Google Scholar]
  16. J. Schein, S. T. Bushby, and N. S. Castro, “Results from Field Tesing of Air Handling Unit and Variable Air Volume Box Fault Detection Tools.,” p. 42p, 2003. [Google Scholar]
  17. J. E. Seem, “Using intelligent data analysis to detect abnormal energy consumption in buildings,” Energy Build., vol. 39, no. 1, pp. 52–58, 2007. [CrossRef] [Google Scholar]
  18. J. Schein and S.T. Bushby, “A hierarchical fault detection and diagnostic method for HVAC systems.,” HVAC&R Res., vol. 12, no. 1, pp. 111–125, 2006. [CrossRef] [Google Scholar]
  19. S. R. West, Y. Guo, X. R. Wang, and J. Wall, “Automated fault detection and diagnosis of HVAC subsystems using statistical machine learning CSIRO Energy Technology, Newcastle, Australia CSIRO ICT Centre, Sydney, Australia.” [Google Scholar]
  20. O. Morisot and D. Marchio, “Fault Detection and Diagnosis on Hvac Variable Air Volume System Using Artificial Neural Networks,” ASHRAE Trans., vol. 105, p. 1087, 1999. [Google Scholar]
  21. J. Liang and R. Du, “Model-based Fault Detection and Diagnosis of HVAC systems using Support Vector Machine method,” Int. J. Refrig., vol. 30, no. 6, pp. 1104–1114, 2007. [CrossRef] [Google Scholar]
  22. W. Y. Lee, C. Park, J. M. House, and G. E. Kelly, “Fault diagnosis of an air-handling unit using artificial neural networks,” ASHRAE Trans., vol. 102, no. 1, pp. 540–549, 1996. [Google Scholar]
  23. W. Y. Lee, J. M. House, and D. R. Shin, “Fault diagnosis and temperature sensor recovery for an air-handling unit,” ASHRAE Transactions, vol. 103, no. 1. pp. 621–633, 1997. [Google Scholar]
  24. B. Fan, Z. Du, X. Jin, X. Yang, and Y. Guo, “A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis,” Build. Environ., vol. 45, no. 12, pp. 2698–2708, 2010. [CrossRef] [Google Scholar]
  25. A. Moosavian, M. Khazaee, H. Ahmadi, M. Khazaee, and G. Najafi, “Fault diagnosis and classification of water pump using adaptive neuro-fuzzy inference system based on vibration signals,” Struct. Heal. Monit., vol. 14, no. 5, pp. 402–410, 2015. [CrossRef] [Google Scholar]
  26. V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review of process fault detection and diagnosis,” Comput. Chem. Eng., vol. 27, no. 3, pp. 293–311, 2003. [CrossRef] [Google Scholar]
  27. S. Wang and J. Cui, “Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method,” Appl. Energy, vol. 82, no. 3, pp. 197–213, 2005. [CrossRef] [Google Scholar]
  28. R. Dunia and S. J. Qin, “Joint diagnosis of process and sensor faults using principal component analysis,” Control Eng. Pract., vol. 6, no. 4, pp. 457–469, 1998. [CrossRef] [Google Scholar]
  29. M. Padilla and D. Choinière, “A combined passive-active sensor fault detection and isolation approach for air handling units,” Energy Build., vol. 99, pp. 214–219, 2015. [CrossRef] [Google Scholar]
  30. Y. Guo et al., “Optimized neural network-based fault diagnosis strategy for VRF system in heating mode using data mining,” Appl. Therm. Eng., vol. 125, pp. 1402–1413, 2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.