Open Access
Issue
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 02011
Number of page(s) 4
Section Smart Manufacturing and Industrial 4.0
DOI https://doi.org/10.1051/matecconf/201925502011
Published online 16 January 2019
  1. A. M. Abdelrhman, M. S. Leong, S. A. M. Saeed, and S. M. Al Obiadi, “A Review of Vibration Monitoring as a Diagnostic Tool for Turbine Blade Faults,” Appl. Matt. Res, vol. 229, pp. 1459–1463, 2012. [Google Scholar]
  2. A. M. Abdelrhman, L. M. Hee, M. S. Leong, and S. Al-Obaidi, “Condition Monitoring of Blade in Turbomachinery: A Review,” Adv. Mech. Eng, vol. 2014, p. 10, 2014. [Google Scholar]
  3. K. H. Hui, L. M. Hee, M. S. Leong, and A. M. Abdelrhman, “Time-Frequency Signal Analysis in Machinery Fault Diagnosis,” in Adv Mat Res, 2014, pp. 41–45. [Google Scholar]
  4. K. Mathioudakis, A. Papathanasiou, E. Loukis, and K. Papailiou, “Fast response wall pressure measurement as a means of gas turbine blade fault identification,” JPGC - Pwr, vol. 113, pp. 269–275, 1991. [Google Scholar]
  5. V. Dedoussis, K. Mathioudakis, and K. Papailiou, “Numerical simulation of blade fault signatures from unsteady wall pressure signals,” JPGC - Pwr, vol. 119, pp. 362–369, 1997. [Google Scholar]
  6. N. Aretakis and K. Mathioudakis, “Wavelet analysis for gas turbine fault diagnostics,” JPGC - Pwr, vol. 119, 1997. [Google Scholar]
  7. H. Simmons, “A non-intrusive method for detecting HP blade resonance,” ASME Paper No, 1986 [Google Scholar]
  8. H. Simmons, “A Non-Intrusive Method for Detecting HP Turbine Blade Resonance,” ASME Paper No, vol. 86, 1986. [Google Scholar]
  9. P. Parge, Trevillion, B., Carle, P, “Machinery Interactive Display and Analysis System Description and Applications,” in Proceedings of the First International Machinery Monitoring and Diagnostic Conference, Las Vegas, Nevada Sept 11-14, 1989, pp. 176–182. [Google Scholar]
  10. P. Parge, Trevillion, B., Carle, P, “Non-Intrusive Vibration Monitoring for Turbine Blade Reliability,” in Proceedings of Second International Machinery Monitoring and Diagnostic Conference, Los Angeles, California, Oct 22-25, 1990, pp. Pp. 435–446. [Google Scholar]
  11. M. H. Lim and M. Salman Leong, “Diagnosis for loose blades in gas turbines using wavelet analysis,” JPGC - Pwr, vol. 127, pp. 314–322, 2005. [Google Scholar]
  12. K. Mathioudakis, E. Loukis, and K. D. Papailiou, “Casing vibration and gas turbine operating conditions,” JPGC - Pwr, vol. 112, pp. 478–485, 1990. [Google Scholar]
  13. A. M. Abdelrhman, M. S. Leong, L. M. Hee, and K. H. Hui, “Vibration Analysis of Multi Stages Rotor for Blade Faults Diagnosis,” Adv Mat Res, vol. 845, pp. 133–137, 2014. [Google Scholar]
  14. Ahmed. M. Abdelrhman, M. S. Leong, L. M. Hee, and W. K. Ngui, “Application of Wavelet Analysis in Blade Faults Diagnosis for Multi-Stages Rotor System,” Appl. Matt. Res, 2013. [Google Scholar]
  15. A. M. Abdelrhman, M. S. Leong, Y. M. Hamdan, and K. H. Hui, “Time Frequency Analysis for Blade Rub Detection in Multi Stage Rotor System,” in Appl. Matt. Res, 2015, pp. 95–99. [Google Scholar]
  16. A. M. Abdelrhman, M. S. Leong, L. M. Hee, and W. K. Ngui, “A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection,” in Appl. Matt. Res, 2015, pp. 90–94. [Google Scholar]
  17. W. K. Ngui, M. Salman Leong, L. Hee, and A. M. Abdelrhman, “Detection of Twisted Blade in Multi Stage Rotor System,” in Appl. Matt. Res, 2015, pp. 144–148. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.