Open Access
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 02003
Number of page(s) 7
Section Smart Manufacturing and Industrial 4.0
Published online 16 January 2019
  1. H. Ebrahimi Orimi, M. Esmaeili, A. Refahi Oskouei, S.A. Mirhadizadehd, P.W. Tse, Defect detection of helical gears based on time- frequency analysis and using multi-layer fusion network, Nondestruct. Test. Eval. 9759 (2016) 1–18. doi:10.1080/10589759.2016.1254211. [Google Scholar]
  2. J.M. Ha, B.D. Youn, H. Oh, B. Han, Y. Jung, J. Park, Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines, Mech. Syst. Signal Process. 70-71 (2016) 161–175. doi:10.1016/j.ymssp.2015.09.040. [CrossRef] [Google Scholar]
  3. M. Nie, L. Wang, Review of condition monitoring and fault diagnosis technologies for wind turbine gearbox, Procedia CIRP. 11 (2013) 287–290. doi:10.1016/j.procir.2013.07.018. [CrossRef] [Google Scholar]
  4. V. Sharma, A. Parey, A Review of Gear Fault Diagnosis Using Various Condition Indicators, Procedia Eng. 144 (2016) 253–263. doi:10.1016/j.proeng.2016.05.131. [CrossRef] [Google Scholar]
  5. K.H. Hui, M.H. Lim, M.S. Leong, S.M. Al-Obaidi, Dempster-Shafer evidence theory for multi-bearing faults diagnosis, Eng. Appl. Artif. Intell. 57 (2017) 160–170. doi:10.1016/j.engappai.2016.10.017. [CrossRef] [Google Scholar]
  6. M.F. Isham, M.S. Leong, M.H. Lim, Z.A. Ahmad, Variational Mode Decomposition for Rotating Machinery Condition Monitoring Using Vibration Signals, Trans. Nanjing Univ. Aero. Astro. 35 (2018) 38–50. doi:10.16356/j.1005-1120.2018.01.038. [Google Scholar]
  7. S.M. Ali, K.H. Hui, L.M. Hee, M.S. Leong, Automated valve fault detection based on acoustic emission parameters and support vector machine, Alexandria Eng. J. (n.d.). doi: [Google Scholar]
  8. L. Barbini, A.P. Ompusunggu, A.J. Hillis, J.L. du Bois, A. Bartic, Phase editing as a signal pre- processing step for automated bearing fault detection, Mech. Syst. Signal Process. 91 (2017) 407–421. doi: [CrossRef] [Google Scholar]
  9. G. Bin Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: Theory and applications, Neurocomputing. 70 (2006) 489–501. doi:10.1016/j.neucom.2005.12.126. [CrossRef] [Google Scholar]
  10. Y. Tian, J. Ma, C. Lu, Z. Wang, Rolling bearing fault diagnosis under variable conditions using LMD-SVD and extreme learning machine, Mech. Mach. Theory. 90 (2015) 175–186. doi: [CrossRef] [Google Scholar]
  11. Q. Tong, J. Cao, B. Han, X. Zhang, Z. Nie, J. Wang, Y. Lin, W. Zhang, A Fault Diagnosis Approach for Rolling Element Bearings Based on RSGWPT-LCD Bilayer Screening and Extreme Learning Machine, IEEE Access. 5 (2017) 5515–5530. doi:10.1109/ACCESS.2017.2675940. [CrossRef] [Google Scholar]
  12. M.S.R.M. Saufi, Z.A. Ahmad, M.H. Lim, M.S. Leong, A review on signal processing techniques for bearing diagnostics, Int. J. Mech. Eng. Technol. 8 (2017) 327–337. [Google Scholar]
  13. D. Wang, S. Wei, H. Luo, C. Yue, O. Grunder, A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine, Sci. Total Environ. 580 (2017) 719–733. doi:10.1016/j.scitotenv.2016.12.018. [CrossRef] [Google Scholar]
  14. Y. Chen, M. Kloft, Y. Yang, C. Li, L. Li, Mixed kernel based extreme learning machine for electric load forecasting, Neurocomputing. 312 (2018) 90–106. doi:10.1016/j.neucom.2018.05.068. [CrossRef] [Google Scholar]
  15. T. Benkedjouh, S. Rechak, Intelligent prognostics based on empirical mode decomposition and extreme learning machine, Model. Identif. Control (ICMIC), 2016 8th Int. Conf. (2016) 943–947. [Google Scholar]
  16. Y. Wang, F. Cao, Y. Yuan, A study on effectiveness of extreme learning machine, Neurocomputing. 74 (2011) 2483–2490. doi: [CrossRef] [Google Scholar]
  17. D. Wang, P. Wang, Y. Ji, An oscillation bound of the generalization performance of extreme learning machine and corresponding analysis, Neurocomputing. 151 (2015) 883–890. doi: [CrossRef] [Google Scholar]
  18. S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw. 95 (2016) 51–67. doi:10.1016/j.advengsoft.2016.01.008. [Google Scholar]
  19. J. Xu, Y. Wang, Z. Ji, Fault Diagnosis Method of Rolling Bearing Based on WKELM Optimized by Whale Optimization Algorithm, Xitong Fangzhen Xuebao / J. Syst. Simul. 29 (2017) 2189–2197. doi:10.16182/j.issn1004731x.joss.201709042. [Google Scholar]
  20. X. Zhang, Z. Liu, Q. Miao, L. Wang, Bearing fault diagnosis using a whale optimization algorithm-optimized orthogonal matching pursuit with a combined time-frequency atom dictionary, Mech. Syst. Signal Process. 107 (2018) 29–42. doi:10.1016/j.ymssp.2018.01.027. [CrossRef] [Google Scholar]
  21. Virupakshappa, B. Amarapur, Computer-aided diagnosis applied to MRI images of brain tumor using cognition based modified level set and optimized ANN classifier, Multimed. Tools Appl. (2018) 1–29. doi:10.1007/s11042-018-6176-1. [Google Scholar]
  22. G.I. Sayed, A. Darwish, A.E. Hassanien, J.-S. Pan, Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by the bubble-net hunting strategy of whales, Adv. Intell. Syst. Comput. 536 (2017) 306–313. doi:10.1007/978-3-319-48490-7_36. [Google Scholar]
  23. M. Abdel-Nasser, A. Saleh, A. Moreno, N.S. Tabalvandani, D. Puig, Feature learning for breast tumour classification using bio-inspired optimization algorithms, Front. Artif. Intell. Appl. 300 (2017) 106–115. doi:10.3233/978-1-61499-806-8-106. [Google Scholar]
  24. E. Bechhoefer, High Speed Gear Dataset, Acoust. Vib. Database. (2014). [Google Scholar]
  25. Y. Lei, D. Han, J. Lin, Z. He, Planetary gearbox fault diagnosis using an adaptive stochastic resonance method, Mech. Syst. Signal Process. 38 (2013) 113–124. doi:10.1016/j.ymssp.2012.06.021. [CrossRef] [Google Scholar]
  26. R. Shao, W. Hu, J. Li, Multi-fault feature extraction and diagnosis of gear transmission system using time-frequency analysis and wavelet threshold de-noising based on EMD, Shock Vib. 20 (2013) 763–780. doi:10.3233/SAV-130783. [CrossRef] [Google Scholar]
  27. M. Firdaus Isham, M. Salman Leong, L.M. Hee, Z.A.B. Ahmad, Empirical mode decomposition: A review on mode selection method for rotating machinery diagnosis, Int. J. Mech. Eng. Technol. 8 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.