Open Access
Issue
MATEC Web Conf.
Volume 252, 2019
III International Conference of Computational Methods in Engineering Science (CMES’18)
Article Number 03009
Number of page(s) 7
Section Computational Artificial Intelligence
DOI https://doi.org/10.1051/matecconf/201925203009
Published online 14 January 2019
  1. B. Bishoi, A, Prakash, V. K. Jain, A comparative study of air quality index based on factor analysis and US-EPA methods for an urban environment. Aerosol and Air Quality Research, 9(1), 1-17, (2009) [CrossRef] [Google Scholar]
  2. World Health Organization, et al. Ambient air pollution: A global assessment of exposure and burden of disease, (2016) [Google Scholar]
  3. Chief inspectorate for environmental protection, Polish air quality index, http://powietrze.gios.gov.pl/pjp/current?lang=en, (2018) [Google Scholar]
  4. K. Stala-Szlugaj, Trends in the consumption of hard coal in Polish households compared to EU households, Gospodarka Surowcami Mineralnymi, 32.3, 5-22, (2016) [CrossRef] [Google Scholar]
  5. Ch. Yuan, E. Ng, L. K. Norford, Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Building and Environment, 71, 245-258, (2014) [CrossRef] [Google Scholar]
  6. T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases. In ACM Sigmod Record, Vol. 25, No. 2, 103-114, (1996) [CrossRef] [Google Scholar]
  7. S. Papadimitriou, H. Kitagawa, P. B. Gibbons, C. Faloutsos, Loci: Fast outlier detection using the local correlation integral. In Data Engineering, Proceedings. 19th International Conference on, 315-326, (2003) [Google Scholar]
  8. B. O’Leary, J. J. ReinersJr, X. Xu, L. D. Lemke, (2016). Identification and influence of spatio-temporal outliers in urban air quality measurements. Science of the Total Environment, 573, 55-65, (2016) [CrossRef] [Google Scholar]
  9. D. Pokrajac, A. Lazarevic, L. J. Latecki, L. J. Incremental local outlier detection for data streams. In Computational intelligence and Data Mining. CIDM 2007, 504-515, (2007) [Google Scholar]
  10. https://www.instructables.com/id/Air-Pollution-Detector/ [Google Scholar]
  11. M. Goldstein, S. Uchida, A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS one, 11(4), e0152173, (2016) [Google Scholar]
  12. X. Zhou, Z. Cao, Y. Ma, L. Wang, R. Wu, W. Wang, Concentrations, correlations and chemical species of PM2. 5/PM10 based on published data in China: potential implications for the revised particulate standard. Chemosphere, 144, 518-526, (2016) [CrossRef] [Google Scholar]
  13. X. Querol, A. Alastuey, S. Rodriguez, F. Plana, E. Mantilla, C. R. Ruiz, Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmospheric Environment, 35(5), 845-858, (2001) [CrossRef] [Google Scholar]
  14. S. A. Abdul-Wahab, S. M. Al-Alawi, Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling & Software, 17(3), 219-228, (2002) [CrossRef] [Google Scholar]
  15. E. Stathopoulou, G. Mihalakakou, M. Santamouris, H. S. Bagiorgas, On the impact of temperature on tropospheric ozone concentration levels in urban environments. Journal of Earth System Science, 117(3), 227-236, (2008) [CrossRef] [Google Scholar]
  16. H. P. Kriegel, P. Kröger, E. Schubert, A. Zimek, LoOP: local outlier probabilities. In Proceedings of the 18th ACM conference on Information and knowledge management,1649-1652, ACM, (2009) [Google Scholar]
  17. P. Mikuška, K. Křůmal, Z. Večeřa, Characterization of organic compounds in the PM2. 5 aerosols in winter in an industrial urban area. Atmospheric Environment, 105, 97-108, (2015) [CrossRef] [Google Scholar]
  18. J. Bednar, J. Brechler, T. Halenka, Photochemical smog modeling in Prague. International journal of environment and pollution, 16(1-6), 264-273, (2001) [CrossRef] [Google Scholar]
  19. P. M. Edwards, S. S. Brown, J. M. Roberts, R. Ahmadov, R. M. Banta, W. P. Dubé, D. Helmig, High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 514(7522), 351, (2014) [CrossRef] [Google Scholar]
  20. F. Meleux, F. Solmon, F. Giorgi, Increase in summer European ozone amounts due to climate change. Atmospheric Environment, 41(35), 7577-7587, (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.