Open Access
Issue
MATEC Web Conf.
Volume 238, 2018
International Conference on Novel Functional Materials (ICNFM2018)
Article Number 05008
Number of page(s) 5
Section Other Material and Process
DOI https://doi.org/10.1051/matecconf/201823805008
Published online 26 November 2018
  1. S. Zhang, D. M. Marini, W. Huang, and S. Santoro, “Design of nanostruc-Tured biological materials through self-assembly of peptides and proteins,” Curr. Opin. Chem. Biol, vol. 6, 865-871 (2002). [CrossRef] [Google Scholar]
  2. M. Cook, P. W. K. Rothemund, and E. Winfree, “Self-assembled circuitpatterns,” DNA Computers 9, (Lecture Notes in Computing Science, vol. 2943). New York: Springer-Verlag, 91-107 (2004). [Google Scholar]
  3. F. Fujibayashi and S. Murata, “Precise simulation model for DNA tile self-assembly,” IEEE Trans. Nanotechnol, vol. 8, no. 3, 361-368(2009). [CrossRef] [Google Scholar]
  4. M. Hashempour, Z. M. Arani, and F. Lombardi, “A graph model for tile sets in DNA self-assembly,” in Proc. IEEE Int. Workshop Design Test Nano Devices, Circuits Syst, Boston, MA, 77-81 (2008). [Google Scholar]
  5. M. Hashempour, Z.M. Arani, and F. Lombardi, “Healing assessmentoftile sets for error tolerance in DNA self-assembly,” IET Trans. Nanobiotech-nol, vol. 2, no. 4, 81-92(2008). [CrossRef] [Google Scholar]
  6. M. Y. Kao and R. Schweller, “Randomized selfassembly for approxi-mate shapes,” in International Colloqium on Automata, Languages, and Programming (ICALP), NewYork:Springer-Verlag, 370-384 (2008). [CrossRef] [Google Scholar]
  7. M. Hashempour, Z. M. Arani, and F. Lombardi, “Counting by DNA Self-Assembly in the Presence of Rotated Tiles,” IEEE Trans. Nanotechnol, vol. 10, no. 3, 77-81 (2011). [CrossRef] [Google Scholar]
  8. J. Tan, X. Zhang and D. Liu, “Facile Preparation of CO2-Responsive Polymer Nano-Objects via Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA)”, Macromol Rapid Comm, vol. 38, no. 13, 15759-15765 (2017). [Google Scholar]
  9. K.T. Geun, P. Nokyoung, and K.U. Jeong, “Electrical Modulation of Graphene by the SelfAssembly of DNA-Functionalized Gold Nanoparticles,” J Nanosci Nanotechno, vol. 17, no. 11, 8007-8011 (2011). [Google Scholar]
  10. E. Ducrot, M. He, G. Yi, “Colloidal alloys with preassembled clusters and spheres,” Nat Mater, vol.16, no. 6, 652-657 (2017). [CrossRef] [Google Scholar]
  11. S. Jiang, F. Hong, H. Hu, “Understanding the Elementary Steps in DNA Tile-Based SelfAssembly,” ACS Nano, vol. 11, no. 9, 9370-9381(2017). [CrossRef] [Google Scholar]
  12. S. Dong, X. Ding, T. Guo, “Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants,” Chem Eng J, vol. 316, no. 17, 778-789 (2017). [CrossRef] [Google Scholar]
  13. D. Sun, T. Guo, B. Guan, “Counting by DNA Self-Assembly in the Presence of Rotated Tiles,” J Lightwave Technol, vol.35, no. 16, 3354-3359 (2017). [CrossRef] [Google Scholar]
  14. S. Xu, G. Ng, J. Xu, P. Rhiannon, Y. Jonathan and B. Cyrille, 2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and Polymerization-Induced Self-Assembly in the Presence of Air, ACS Macro Lett, vol. 6, no. 11, 1237-1244 (2017). [CrossRef] [Google Scholar]
  15. C. Zhu, S. Fu, J. Song, “Self-Assembled Fe-N- Doped Carbon Nanotube Aerogels with SingleAtom Catalyst Feature as High-Efficiency Oxygen Reduction Electrocatalysts,” Small, vol. 13, no. 15, 157-167 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.