Open Access
Issue
MATEC Web Conf.
Volume 238, 2018
International Conference on Novel Functional Materials (ICNFM2018)
Article Number 02002
Number of page(s) 5
Section Composite, Oxide and Ultrafine Materials
DOI https://doi.org/10.1051/matecconf/201823802002
Published online 26 November 2018
  1. X Y Wu, J C Huang, Q C Lang, et al. Progress and prospects of research on phosphating slag resource[J]. Recy. Circ.8(8): 38-41 (2015). [Google Scholar]
  2. X Y Xiong, T Q Xiong, Q Q Song, et al. Metal surface treatment phosphati slag comprehensive utilization technology[J]. Meta. Pow. 2: 43-49 (2015). [Google Scholar]
  3. Y Lu, Y T Song, Y L Liu. Study on preparation and properties of phosphate corrosion resistant coatings[J]. Elect. Rev, 30(118): 19-22.(2016). [Google Scholar]
  4. H Q Fan, S Y Li. Research progress on the status and resource utilization of solid waste phosphate slag[J]. Mode. Chem. 27(s1): 97-99, 101(2007). [Google Scholar]
  5. X Q Liu, S N Zhang, L J Wang, et al. Effect of calcination temperature on preparation of LiFePO4/C positive electrode material by purifying phosphate Slag[J]. Journal S. P. U. 34(1): 26-30 (2017). [Google Scholar]
  6. F P Ma, X W Chen, J Tian. Production technology of tricalcium phosphate by using phosphating waste residue[J]. Inor S. I. 47(9): 54-55 (2015). [Google Scholar]
  7. J T, X W Chen, R P Jiang. Zinc phosphating solution waste slag comprehensive utilization technology[J]. Mode C. I. 35(6): 155-156 (2015). [Google Scholar]
  8. D F Wu, S N Zhang, L J Wang, et al. Preparation of new catalyst and photocatalytic reaction for waste phosphate slag hydrothermal reaction[J]. Journal S. P. U. 33(4): 283-288 (2016). [Google Scholar]
  9. H Y Ye, D M Zheng, H Q Li, et a.Study on preparation of ultrafine dihydrate ferric phosphate[J]. Inor S. I. 44(4): 59-61 (2012). [Google Scholar]
  10. P Z Zhao, H B Liu, H H Zheng, et al. Facile synthesis of FePO4•2H2O submicrometer-discs. Mate L. 123: 128-130 (2014). [CrossRef] [Google Scholar]
  11. H J Song, Y L Sun, X H Jia. Hydrothermal synthesis of iron phosphate microspheres constructed by mesoporous polyhedral nanocrystals. Mater C. 107: 182-188 (2015). [Google Scholar]
  12. G C Li, S Zhang, H G Peng, et al. Growth and shape control of orthorhombic Fe5(PO4)4(OH)3•2H2O single crystalline dendrites. Jour C. G. 312(20): 2967-2971 (2010). [Google Scholar]
  13. Y M Zhu, S Z Tang, H H Shi, et al. Synthesis of FePO4•xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method. Cerams Interl, 40(2): 2685-2690 (2014). [CrossRef] [Google Scholar]
  14. T B Zhang, X B Cheng, Q Zhang, et al. Construction of a cathode using amorphous FePO4 nanoparticles for a high-power/energy-density lithiumion battery with long-term stability. Jour P. S. 324: 5260(2016). [Google Scholar]
  15. F K Behbahani, F M Golchin. A new catalyst for the synthesis of 2-substituted perimidines catalyzed by FePO4. Jour T.U. Sci. 11(1): 85-89 (2017). [Google Scholar]
  16. X Wang, J Zhuang, Q Peng, et al. A general strategy for nanocrystal synthesis, Nature, 437: 121-124 (2005). [CrossRef] [Google Scholar]
  17. L S Zhong, J S Hu, H P Liang, et al. Selfassembled 3D flowerlike iron oxide nanostructures and their application in water treatment, Adv. Mater. 18: 2426-2431(2006). [CrossRef] [Google Scholar]
  18. C Chen, W Chen, J Lu, et al. Transition-metal phosphate colloidal spheres, Angew. Chem. Int. Ed. 48: 4816-4819(2009). [CrossRef] [Google Scholar]
  19. H Okawa, J P Yabuki, Y H Kawamura, et al. Synthesis of FePO4 cathode material for lithium ion batteries by a sonochemical method, Mater. Res. Bull. 43: 1203-1208(2008). [CrossRef] [Google Scholar]
  20. A Mamoru. Oxidation activity of iron phosphate and its characters, Catal. Today 85: 193-198(2003) . [CrossRef] [Google Scholar]
  21. K Kandori, T Kuwae, T Ishikawa. Control on size and adsorptive properties of spherical ferric phosphate particles, J. Colloid Interface Sci. 300: 225-231 (2006). [CrossRef] [Google Scholar]
  22. Z C Shi, A Attia, W L Ye, et al. Synthesis of FePO4 by direct solid state reaction at ambient temperature and its charge–discharge properties, Electrochim. Acta 53: 2665-2673 (2008). [CrossRef] [Google Scholar]
  23. F Cao, D X Li. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres, Bioinsp. Biomim. 5: 16005-16010 (2010). [CrossRef] [Google Scholar]
  24. L M Wei, Y Zhang, L J Wang, et al. Synthesis of nitrogen-doped carbon nanotubes-FePO4 composite from phosphate residue and its application as effective Fenton-like catalyst for dye degradation. Jour E. Sci, 1-9 (2018). [Google Scholar]
  25. Y Zhang, Z F Ying, L J Wang, et al. Modified iron phosphate/polyvinyl alcohol composite film for controlled-release fertilisers[J]. RSC Adv. 8: 18146-18152 (2018). [CrossRef] [Google Scholar]
  26. R Cai, Y P Du, W Y Zhang, et al. Synthesis of porous amorphous FePO4 nanotubes and their lithium storage properties, Chem. Eur. J. 19:1568-1572(2013) . [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.