Open Access
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 04068
Number of page(s) 5
Section Circuit Simulation, Electric Modules and Displacement Sensor
Published online 19 November 2018
  1. L. Duan, J. Huang, and B. Shou, Duopoly competition in dynamic spectrum leasing and pricing, IEEE T. Mobile Comput., vol.11, no.11, pp.1706-1719, Nov.2012. [Google Scholar]
  2. L. Duan, J. Huang, and B. Shou, Investment and pricing with spectrum uncertainty: A cognitive operators perspective, IEEE T. Mobile Comput., vol.10, no.11, pp.1590-1604, Nov. 2011. [CrossRef] [Google Scholar]
  3. M. S. Khan, M. Usman, and V.V. Hiep et al., Efficient selection of users pair in cognitive radio network to maximize throughput using simultaneous transmit-sense approach, IEICE Trans. Commmu., vol.E100-B, no.2, pp.380-389, Feb. [Google Scholar]
  4. Ciscovisualnetworkingindex:Forecastandmethodology, 2016-2021. 11-520862.html. [accessed on Auguset 10, 2017]. [Google Scholar]
  5. X. Cao, Y. Chen, and K.J.R. Liu, Cognitive radio networks with heterogeneous users: How to procure and price the spectrum?, IEEE T. Commun., vol.14, no.3, pp.1676-1688, March 2015. [Google Scholar]
  6. D. Niyato and E. Hossain, A game theoretic analysis of service competition and pricing in heterogeneous wireless access networks, IEEE T. Commun., vol.7, no.12, pp.5150-5155, Dec.2008. [Google Scholar]
  7. J. Elias, F. Martignon, and L. Chen et al., Joint operator pricing and network selection game in cognitive radio networks: Equilibrium, system dynamics and price of anarchy, IEEE T. Veh Technol., vol.62, no.9, pp.4576-4589, Nov.2013. [CrossRef] [Google Scholar]
  8. F. Li, Z. Sheng, and J. Hua et al, Preference-based spectrum pricing in dynamic spectrum access networks, IEEE T. Serv. Comput., in press. [Google Scholar]
  9. S. Ren, K. Park, and M. Schaar, Entry and spectrum sharings cheme selection in femtocell communications markets, IEEE/ACM Trans. Netw., vol.21, no.1, pp.218-232, Feb. 2013. [CrossRef] [Google Scholar]
  10. C. Zhang, B. Gu, and K. Yamori et al., Duopoly competition in time-dependent pricing for improving revenue of network service providers, IEICE Trans. Commmu., vol.E96-B, no.12, pp.2964-2975, Dec. 2015. [CrossRef] [Google Scholar]
  11. K. Kinoshita, Y. Maruyama, and K. Kawano et al., A spectrum sharing method based on users behavior and providers profit, IEICE Trans. Commmu., vol.E100-B, no.10, pp.1928-1938, Nov. 2017. [CrossRef] [Google Scholar]
  12. N.H. Tran, C.S. Hong, and Z. Han et al., Optimal pricing effect on equilibrium behaviors of delay-sensitive users in cognitive radio networks, IEEE Trans. J. Sel. Areas Commun., vol.31, no.11, pp.2566-2579, Nov. 2013. [CrossRef] [Google Scholar]
  13. N.H. Tran, L.B. Le, S. Ren, Z. Han, and C.S. Hong, Joint pricing and load balancing for cognitive spectrum access: Non-cooperation versus cooperation, IEEE Trans. J. Sel. Areas Commun., vol.33, no.5, pp.972-985, May 2015. [CrossRef] [Google Scholar]
  14. D. Fudenberg and J. Tirole, Game theory, MIT Press, Cambridge, MA, USA, 1991. [Google Scholar]
  15. Z. Han, D. Niyato, and W. Saad et al., Game theory in wireless and communication networks: Theory, models, and applications, Cambridge University Press, Cambridge, UK, 2011. [CrossRef] [Google Scholar]
  16. S. Zhao, Q. Zhu, and G. Zhu et al., Competitions and dynamics of mvnos in spectrum sharing: An evolutionary game approach, IEICE Trans. Commmu., vol.E96-B, no.1, pp.69-72, Jan.2013. [CrossRef] [Google Scholar]
  17. X.J. Tan, L. Li, and W. Guo, A game-theoretic approach for opportunistic spectrum sharing in cognitive radio networks with incomplete information, IEICE Trans. Commmu., vol.95, no.4, pp.1117-1124, April 2012. [CrossRef] [Google Scholar]
  18. L. Gao, X. Wang, Y. Xu, and Q. Zhang, Spectrum trading in cognitive radio networks: A contract-theoretic modeling approach, IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 843-855, April 2011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.