Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 03042
Number of page(s) 6
Section Algorithm Study and Mathematical Application
DOI https://doi.org/10.1051/matecconf/201823203042
Published online 19 November 2018
  1. Grobel K, Assan M. Isolated sign language recognition using hidden Markov models[C]. IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation. IEEE, 2002:162-167 vol.1. [Google Scholar]
  2. Reyes M, Dominguez G, Escalera S. Featureweighting in dynamic timewarping for gesture recognition in depth data[C]. IEEE International Conference on Computer Vision Workshops. IEEE, 2011:1182-1188. [Google Scholar]
  3. Simo-Serra E, Ramisa A, Alenyà G, et al. Single image 3D human pose estimation from noisy observations[C] Computer Vision and Pattern Recognition. IEEE, 2012:2673-2680. [Google Scholar]
  4. Sinha A, Choi C, Ramani K. Deephand: Robust hand pose estimation by completing a matrix imputed with deep features[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 4150-4158. [Google Scholar]
  5. Koren Y. The bellkor solution to the netflix grand prize[J]. Netflix Prize Documentation, 2009. [Google Scholar]
  6. Zhu Yuanxin, Xu Guangyou, Huang Huangyou, etc. Dynamic isolated gesture recognition based on appearance[J]. Journal of Software,2000,11 (1): 54-61. [Google Scholar]
  7. Xiao Ling, Li Renfa, Zeng Fanzi, Qu Weilan. Dynamic gesture recognition method based on learning sparse representation[J]. Journal on Communications, 2013, 34(6): 128-135. [Google Scholar]
  8. Liu Shuping, Liu Yu,Yu Jun, Wang Zengfu. Hierarchical static gesture recognition combining finger detection and HOG feature[J]. Journal of Image and Graphics, 2015, 20(6) : 0781-0788. [Google Scholar]
  9. Wang Kai, Yu Hongyang, Zhang Ping. Real-time gesture recognition based on AdaBoost algorithm and optical flow matching[J]. Microelectronics & Computer. 2012. 5(29):138-141. [Google Scholar]
  10. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. Proceeding s of the IEEE conference on computer vision and pat tern recognition. 2015: 3431-3440. [Google Scholar]
  11. Badrinarayanan V, Handa A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling[J]. arXiv preprint arXiv:1505.07293, 2015. [Google Scholar]
  12. Oberweger M, Lepetit V. DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation[J]. 2017:585-594. [Google Scholar]
  13. Zimmermann C, Brox T. Learning to Estimate 3D Hand Pose from Single RGB Images[J]. 2017:4913-4921. [Google Scholar]
  14. Wei S E, Ramakrishna V, Kanade T, et al. Convolutional pose machines[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 4724-4732. [Google Scholar]
  15. Oberweger M, Wohlhart P, Lepetit V. Hands Deep in Deep Learning for Hand Pose Estimation[J]. Computer Science, 2016. [Google Scholar]
  16. Li Qing, Tang Huan, Chi Jian Nan, Xing Yongyue, Li Huatong. Study on the method of gesture segmentation based on the improved maximum category variance method [J]. Acta Automatica Sinica, 2017, 43(4): 528-537 [Google Scholar]
  17. Mao Yanming, Zhang Liliang. Gesture segmentation and recognition based on Kinect depth information[J]. Journal of System Simulation, 2015, 27(4): 830-835 [Google Scholar]
  18. Zhang Yi, Yao Yuanyuan, Luo Yuan. HMM dynamic gesture recognition algorithm based on B parameter improvement[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition). 2015(10): 416-419. [Google Scholar]
  19. Wang Xiying, Dai Guozhong, Zhang Xiwen, et al. Complex dynamic gesture recognition based on HMM-FNN model[J]. Journal of Software, 2008, 19 (9): 2302-2312. [CrossRef] [Google Scholar]
  20. Zhang Yi, Wu Shihai, Luo Yuan. The method and application of signal track recognition based on HMM[J]. Electro-Optic Technology Application. 2015 (8): 650-656. [Google Scholar]
  21. Xu Jiabin. Research on dynamic gesture recognition based on parallel HMM[D]. Beijing University of Posts and Telecommunications. 2016. [Google Scholar]
  22. Yu Meijuan, Ma Xirong. Improvement of dynamic gesture recognition based on HMM method [J]. Computer Science. 2011(1):251-252. [Google Scholar]
  23. Wang Wanliang, Yang Jingwei and Jiang Yibo. Gesture recognition based on motion sensor[J]. Chinese Journal of Sensors and Actuators, 2011, 24(12): 1723-1727. [Google Scholar]
  24. Mueller F, Bernard F, Sotnychenko O, et al. GANerated Hands for Real-time 3D Hand Tracking from Monocular RGB[J]. 2017. [Google Scholar]
  25. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversrial Nets[C].International Conference on Neural Information Processing Systems. 2014,3:2672-2680. [Google Scholar]
  26. Spurr A, Song J, Park S, et al. Cross-modal Deep Variational Hand Pose Estimation[J]. 2018. [Google Scholar]
  27. Kendall A, Grimes M, Cipolla R. Convolutional networks for real-time 6-DOF camera relocalization. CoRR abs/1505.07427 (2015)[J]. 2015. [Google Scholar]
  28. Xue junjie and Chen jianqiang. Research and implementation of weighted DTW gesture recognition method[J]. Information Technology. 2015(11):125-129. [Google Scholar]
  29. Yu Chao, Guan Shengxiao. Dynamic gesture tracking recognition based on TLD and DTW[J]. Computer Systems & Applications. 2015. 10(24):148-154. [Google Scholar]
  30. Li Kai, Wang Yongxiong, Sun Yipin. An improved DTW dynamic gesture recognition method[J]. Journal of Chinese Computer Systems. 2016. 7(7):1600-1603. [Google Scholar]
  31. He Chao, Hu Zhangfang and Wang Yan. A dynamic gesture recognition method based on improved DTW algorithm[J]. Digital Communication. 2013. 6(40):21-25. [Google Scholar]
  32. Zhou Zhiping and Miao Minmin. Combined DTW and improved STLCS dynamic gesture authentication[J]. Journal of Electronic Measurement and Instrumentation. 2015. 7(29):1064-1073. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.