Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 02040
Number of page(s) 5
Section 3D Images Reconstruction and Virtual System
DOI https://doi.org/10.1051/matecconf/201823202040
Published online 19 November 2018
  1. Su H, Zhou J, Zhang Z H. Survey of super-resolution image reconstruction methods. J. Acta Automatica Sin. 39, 3 (2013) [Google Scholar]
  2. Zhang H, Zhang L, Shen H. A blind super-resolution reconstruction method considering image registration errors. J. Int J Fuzzy Syst, 17, 11 (2015) [Google Scholar]
  3. Zhao SR, Liu ZH, Liang H, et al. A mixed non-local prior model for image super-resolution reconstruction. J. Chinese J Electron, 26, 5 (2017) [Google Scholar]
  4. Pu J, Zhang JP, Huang H. A review of super-resolution algorithms. J. Shandong University. 39, 7 (2009) [Google Scholar]
  5. W. T. Freeman, T. R. Jones, E. C. Pasztor. Example based super-resolution. J. Comp. Graph. 22, 9 (2002) [Google Scholar]
  6. Liu C, Shum H Y., Zhang C S. Two-step approach hallucinating faces: global parameters model and nonparametric model (CVPR, Kauai, USA, 2001) [Google Scholar]
  7. Chang H, Yeung D Y. Super-resolution though neighbor embedding (CVPR, DC, USA, 2004) [Google Scholar]
  8. Yang J, Wright J, Huang TS, et al. Image super-resolution via sparse representation. J. IEEE Trans. On Image Processiong. 19, 12 (2010) [Google Scholar]
  9. Ge G Z, Yang M. Single image super-resolution reconstruction based on sparse representation. Computer Technology &Development 23, 3 (2013) [Google Scholar]
  10. Donoho D L. For most large under determined systems of linear equations, the minimum ll-norm solution is also the sparsest solution. J. Commun Pur Appl. Math. 59, 32 (2006) [Google Scholar]
  11. Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms (ANIPS, Paris, 2006) [Google Scholar]
  12. Zhang Z, Li F Z, Zhao M B, et al. Robust neighborhood preserving projection by nuclear/l2,1-norm regularization for image feature extraction. IEEE Tans. On Image Processing, 26, 5 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.