Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 02029
Number of page(s) 6
Section 3D Images Reconstruction and Virtual System
DOI https://doi.org/10.1051/matecconf/201823202029
Published online 19 November 2018
  1. Osborne M F M. Brownian Motion in the Stock Market[J]. Operations Research, 1959, 7(2): 145-173. [CrossRef] [Google Scholar]
  2. Malkiel B G, Fama E F. EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK*[J]. Journal of Finance, 1970, 25(2): 383-417. [CrossRef] [Google Scholar]
  3. Lo A W, Mackinlay A C. A Non-Random Walk Down Wall Street:[M]. PRINCETON UNIVERSITY PRESS, 1999. [Google Scholar]
  4. Ding Peng, Quantitative Investment: Strategy and Technology[M]. PHEI, 2014. [Google Scholar]
  5. M. Glantz, R. Kissell, Multi-asset risk modeling: techniques for a global economy in an electronic and algorithmic trading era[M], Academic Press, 2013. [Google Scholar]
  6. Zhou Zhihua, Machine learing[M]. Tsinghua University Press, 2016. [Google Scholar]
  7. Allen F, Karjalainen R. Using genetic algorithms to find technical trading rules 1[J]. Journal of Financial Economics, 1999, 51(2): 245-271. [CrossRef] [Google Scholar]
  8. Kim K J. Financial time series forecasting using support vector machines[J]. Neurocomputing, 2003, 55(1): 307-319. [CrossRef] [Google Scholar]
  9. Khaidem L, Saha S, Dey S R. Predicting the direction of stock market prices using random forest[J]. 2016. [Google Scholar]
  10. Rumelhart, David E, Hinton, et al. Learning representations by back-propagating errors[J]. 1986, 323(6088): 399-421. [Google Scholar]
  11. White H. Economic prediction using neural networks: the case of IBM daily stock returns[J]. IEEE International Conference on Neural Networks, 1988. [Google Scholar]
  12. Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780. [CrossRef] [PubMed] [Google Scholar]
  13. Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. Yu Kai, Jia Lei, Chen Yuqiang, Past, today and future of deep learning[J]. Research and development of computer, 2013, 50(9): 1799-1804. [Google Scholar]
  15. Chen Kai, Zhou Yi, Dai Fangyan. A LSTM-based method for stock returns prediction: A case study of China stock market[C]. IEEE International Conference on Big Data. IEEE, 2015:2823-2824. [Google Scholar]
  16. Ding Xiao, Zhang Yue, Liu Ting, et al. Deep learning for event-driven stock prediction[C]// International Conference on Artificial Intelligence. AAAI Press, 2015:2327-2333. [Google Scholar]
  17. Jia Hengjian. Investigation into the effectiveness of long short term memory networks for stock price prediction[J]. arXiv preprint arXiv:1603.07893, 2016. [Google Scholar]
  18. Nelson D M Q, Pereira A C M, de Oliveira R A. Stock market’s price movement prediction with LSTM neural networks[C]//Neural Networks (IJCNN), 2017 International Joint Conference on. IEEE, 2017: 1419-1426. [CrossRef] [Google Scholar]
  19. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [Google Scholar]
  20. Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014. [Google Scholar]
  21. Breiman L. Bagging predictors[J]. Machine learning, 1996, 24(2): 123-140. [Google Scholar]
  22. Efron B, Tibshirani R J. An introduction to the bootstrap[M]. CRC press, 1994. [Google Scholar]
  23. Hansen L K, Salamon P. Neural network ensembles[J]. IEEE transactions on pattern analysis and machine intelligence, 1990, 12(10): 993-10 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.