Open Access
Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 02020 | |
Number of page(s) | 4 | |
Section | 3D Images Reconstruction and Virtual System | |
DOI | https://doi.org/10.1051/matecconf/201823202020 | |
Published online | 19 November 2018 |
- T.K. Landauer, S.T. Dumais. The latent semantic analysis theory of acquisition, induction, and representation of knowledge, 211-240(1997) [Google Scholar]
- M. Lapata, R. Barzilay. Automatic evaluation of text coherence: models and representations,1085-1090 (2005) [Google Scholar]
- R. Barzilay, M. Lapata. Modeling local coherence: an entity-based approach, 141-148(2008) [Google Scholar]
- B.J. Grosz, S. Weinstein, A.K. Joshi. Centering: a framework for modeling the local coherence of discourse, 203-225(2002) [Google Scholar]
- C. Guinaudeau, M. Strube. Graph-based Local Coherence Modeling, 93-103(2013) [Google Scholar]
- M. Zhang, V.W. Feng, B. Qin, G. Hirst, T. Liu. Encoding World Knowledge in the Evaluation of Local Coherence, 524-533(2015) [Google Scholar]
- Z. Lin, H.T. Ng, M.Y. Kan. Automatically evaluating text coherence using discourse relations, 997-1006 (2011) [Google Scholar]
- W.C. Mann, S.A. Thompson. Rhetorical Structure Theory: Toward a functional theory of text organization, 8(3), 243-281(2009) [Google Scholar]
- M. Surdeanu, T. Hicks, M.A. Valenzuela-Escarcega. Two Practical Rhetorical Structure Theory Parsers, (2015) [Google Scholar]
- H. Hernault, H. Prendinger, D.A. Duverle. HILDA: A Discourse Parser Using Support Vector Machine Classification, 1(3), (2010) [Google Scholar]
- V.W. Feng, G. Hirst. Text-level discourse parsing with rich linguistic features.60-68 (2012) [Google Scholar]
- S. Joty, G. Carenini, R. Ng. Combining Intraand Multi-sentential Rhetorical Parsing for Document-level Discourse Analysis, 486-496(2013) [Google Scholar]
- T. Joachims. Optimizing search engines using clickthrough data, 133-142(2002) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.