Open Access
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 01056
Number of page(s) 5
Section Network Security System, Neural Network and Data Information
Published online 19 November 2018
  1. Hoornweg, Daniel, BhadaTata, et al. Environment: Waste production must peak this century, Nature, 502(7473), 615-7 (2013) [CrossRef] [Google Scholar]
  2. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, et al. Backpropagation applied to handwritten zip code recognition. Neural computation, vol.1,no.4, pp. 541–551 (1989). [Google Scholar]
  3. Brinez L J C, Rengifo A, Escobar M. Automatic waste classification using computer vision as an application in colombian high schools, Networked and Electronic Media. IET, 10 (5)-10 (5) (2017) [Google Scholar]
  4. Sudha S, Vidhyalakshmi M, Pavithra K, et al. An automatic classification method for environment: Friendly waste segregation using deep learning, Technological Innovations in ICT for Agriculture and Rural Development. IEEE, 65-70 (2016) [Google Scholar]
  5. Erhan D, Szegedy C, Toshev A, et al. Scalable Object Detection Using Deep Neural Networks, 3(4), 2155-2162 (2013) [Google Scholar]
  6. R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, In CVPR, pages 580–587, (2014) [Google Scholar]
  7. Mittal G, Yagnik K B, Garg M, et al. SpotGarbage:smartphone app to detect garbage using deep learning, ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 940-945 (2016) [Google Scholar]
  8. Rad M S, Kaenel A V, Droux A, et al. A Computer Vision System to Localize and Classify Wastes on the Streets, International Conference on Computer Vision Systems. Springer, Cham, 195-204 (2017) [CrossRef] [Google Scholar]
  9. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions, 1-9 (2014) [Google Scholar]
  10. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition, 770-778 (2015) [Google Scholar]
  11. Girshick, Ross. Fast R-CNN. Computer Science (2015) [Google Scholar]
  12. Ren, Shaoqing, et al. “Faster R-CNN: towards real-time object detection with region proposal networks.” International Conference on Neural Information Processing Systems MIT Press, 91-99 (2015) [Google Scholar]
  13. Deng J, Dong W, Socher R, et al. ImageNet: A large-scale hierarchical image database, Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248-255 (2009) [Google Scholar]
  14. Sermanet P, Eigen D, Zhang X, et al. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, Eprint Arxiv, (2013) [Google Scholar]
  15. Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning, (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.