Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 01054
Number of page(s) 5
Section Network Security System, Neural Network and Data Information
DOI https://doi.org/10.1051/matecconf/201823201054
Published online 19 November 2018
  1. M. Buro, Call for AI research in RTS games, In Proceedings of the AAAI-04 Workshop on Challenges in Game AI 2004, pp. 139--142, 2004. [Google Scholar]
  2. G. Erickson and M. Buro, Global state evaluation in StarCraft, in Tenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 112-118, 2014. [Google Scholar]
  3. S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss, A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft, Computational Intelligence & Ai in Games, vol. 5, pp. 293-311, 2013. [CrossRef] [Google Scholar]
  4. M. Chung, M. Buro, and J. Schaeffer, Monte Carlo Planning in RTS Games, in IEEE Symposium on Computational Intelligence and Games, pp. 117--124, 2005. [Google Scholar]
  5. R. K. Balla and A. Fern, UCT for tactical assault planning in real-time strategy games, IJCAI 2009, Proceedings of the International Joint Conference on Artificial Intelligence, Pasadena, California, Usa, pp. 40-45, July, 2010. [Google Scholar]
  6. D. Churchill, A. Saffidine, and M. Buro, Fast Heuristic Search for RTS Game Combat Scenarios, 2012. [Google Scholar]
  7. A. Kovarsky and M. Buro, Heuristic Search Applied to Abstract Combat Games, Lecture Notes in Computer Science, vol. 3501, pp. 66-78, 2005. [CrossRef] [Google Scholar]
  8. M. Buro, Adversarial hierarchical-task network planning for complex real-time games, in International Conference on Artificial Intelligence, pp. 1652-1658, 2015. [Google Scholar]
  9. D. N. Tung, Q. N. Kien, and T. Ruck, Heuristic Search Exploiting Non-additive and Unit Properties for RTS-game Unit Micromanagement (Preprint), Journal of Information Processing, vol. 23, pp. 2-8, 2015. [CrossRef] [Google Scholar]
  10. M. Stanescu, S. P. Hernandez, G. Erickson, R. Greiner, and M. Buro, Predicting army combat outcomes in StarCraft, in AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 86-92, 2013. [Google Scholar]
  11. A. Uriarte and S. Ontañón, Game-tree search over high-level game states in RTS games, in AIIDE, pp. 73-79, 2014. [Google Scholar]
  12. S. Bakkes, P. Spronck, and J. V. D. Herik, Phase-dependent evaluation in RTS games, 2013. [Google Scholar]
  13. Y. J. Li, P. H. F. Ng, and S. C. K. Shiu, A fast evaluation method for RTS game strategy using fuzzy extreme learning machine, Natural Computing, vol. 15, pp. 1-13, 2015. [Google Scholar]
  14. M. Stanescu, N. A. Barriga, A. Hess, and M. Buro, Evaluating real-time strategy game states using convolutional neural networks, in Computational Intelligence and Games, 2017. [Google Scholar]
  15. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998. [CrossRef] [Google Scholar]
  16. H. Schwenk, Continuous space language models, Computer Speech & Language, vol. 21, pp. 492-518, 2007. [CrossRef] [Google Scholar]
  17. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, IEEE Signal Processing Magazine, vol. 29, pp. 82-97, 2012. [NASA ADS] [CrossRef] [Google Scholar]
  18. A. Graves, A. R. Mohamed, and G. Hinton, Speech recognition with deep recurrent neural networks, vol. 38, pp. 6645-6649, 2013. [Google Scholar]
  19. J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul, Fast and Robust Neural Network Joint Models for Statistical Machine Translation, in Meeting of the Association for Computational Linguistics, pp. 1370-1380, 2014. [Google Scholar]
  20. M. Sundermeyer, T. Alkhouli, J. Wuebker, and H. Ney, Translation Modeling with Bidirectional Recurrent Neural Networks, in Conference on Empirical Methods in Natural Language Processing, 2014. [Google Scholar]
  21. https://www.topbots.com/a-brief-history-of-neural-network-architectures/ [Google Scholar]
  22. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, pp. 1-9, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.