Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 01019
Number of page(s) 6
Section Network Security System, Neural Network and Data Information
DOI https://doi.org/10.1051/matecconf/201823201019
Published online 19 November 2018
  1. J. Inführ, G. Raidl: A memetic algorithm for the virtual network mapping problem. J. Heuristics 22(4), 475-505 (2016). [CrossRef] [Google Scholar]
  2. A. Fischer, J. F. Botero, M. T. Beck, H. D. Meer, X. Hesselbach: Virtual network embedding: a survey. IEEE Commun. Surv. Tut. 15(4), 1888-1906 (2013). [CrossRef] [Google Scholar]
  3. N. M. M. K. Chowdhury, R. Boutaba: A survey of network virtualization. Comput. Netw. 54(5), 862-876 (2010). [CrossRef] [Google Scholar]
  4. E. Amaldi, S. Coniglio, A. M. C. A. Koster, M. Tieves: On the computational complexity of the virtual network embedding problem. Electron. Notes Discret. Math. 52, 213-220 (2016). [CrossRef] [Google Scholar]
  5. C. Wang, Y. Su, L. Zhou, S. Peng, Y. Yuan, H. Huang: A virtual network embedding algorithm based on hybrid particle swarm optimization. In: International Conference on Smart Computing and Communication, pp. 568-576. Springer, Heidelberg (2016). [Google Scholar]
  6. X. Liu, Z. Zhang, X. Li, S. Su: Optimal virtual network embedding based on artificial bee colony. EURASIP J. Wirel. Comm. 2016(1), 273(2016). [CrossRef] [Google Scholar]
  7. G. Sun: Virtual network embedding technology research. Doctoral dissertation, University of Electronic Science and Technology of China. Chengdu Sichuan, P.R.China (2012). [Google Scholar]
  8. W. Wang, B. Wang, Z. Wang, C. Xing: Virtual network embedding algorithm based on a hybrid swarm intelligence optimization. J. Comput. Appl. 34(4), 930-934 (2014). [Google Scholar]
  9. J. Liu, T. Song, Y. Hu, L. Zhuang: Research on virtual network mapping based on mixed genetic algorithm. J. Chin. Comput. Syst. 37(4), 773-777 (2016). [Google Scholar]
  10. B. Cissé, S. E. Yacoubi, S. Gourbière: The basic reproduction number for Chagas disease transmission using cellular automata. In: International Conference on Cellular Automata, pp. 278-287. Springer, Heidelberg (2014). [Google Scholar]
  11. A. Bakhshandeh, Z. Eslami: An authenticated image encryption scheme based on chaotic maps and memory cellular automata. Opt. Laser. Eng. 51(6), 665-673 (2013). [CrossRef] [Google Scholar]
  12. M. Alabbas, S. Jaf, A. H. M. Abdullah: Optimize BPNN using new breeder genetic algorithm. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 373-382. Springer, Heidelberg (2016). [Google Scholar]
  13. J. Was, G. C. Sirakoulis: Special issue on simulation with cellular automata. Simul. T. Soc. Mod. Sim. 92(2), 99-100 (2016). [Google Scholar]
  14. E. Alba, B. Dorronsoro: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE T. Evolut. Comput. 9(2), 126-142 (2005). [CrossRef] [Google Scholar]
  15. S. Karthikeyan, M. Saravanan, M. Rajkumar: Optimization of worker assignment in dynamic cellular manufacturing system using genetic algorithm. J. Manuf. Syst. 15(1), 35-42 (2016). [CrossRef] [Google Scholar]
  16. S. Wolfram: Cellular automata as models of complexity. Nature 311(5985), 419-424 (1984). [CrossRef] [Google Scholar]
  17. J. Yu, C. Wu: Randomized algorithm for virtual network mapping problem based on load balancing. Comput. Sci. 41(6), 69-74 (2014). [Google Scholar]
  18. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan: A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE T. Evolut. Comput. 6(2), 182-197 (2002). [CrossRef] [Google Scholar]
  19. G. C. Sirakoulis: Parallel application of hybrid DNA cellular automata for pseudorandom number generation. J. Cell. Autom. 11(1), 63-89 (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.