Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 01007
Number of page(s) 4
Section Network Security System, Neural Network and Data Information
DOI https://doi.org/10.1051/matecconf/201823201007
Published online 19 November 2018
  1. Florian Schroff, Dmitry Kalenichenko, James Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, in: Proc. IEEE Conf. Comput. Vis.Pattern Recognit. (CVPR), Jun. 2015, pp. 815-823. [Google Scholar]
  2. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification, in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 1701-1708. [CrossRef] [Google Scholar]
  3. M. Lin, Q. Chen, S. Yan. Network in network. CoRR, abs/1312. 4400, 2013, 2-6. [Google Scholar]
  4. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.In CVPR, 2015. [Google Scholar]
  5. A. Kumar, A. C. Berg, P.N. Belhumeur, G. Hinton. ImageNet classification with deep convolutional neural networks. In ANIPS, 202, 1-4 [Google Scholar]
  6. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015 [Google Scholar]
  7. M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV, 2014. [Google Scholar]
  8. T. Vatanen, T. Raiko, H. Valpola, and Y. LeCun. Pushing stochastic gradient towards second-order methods–back propagation learning with transformations in nonlinearities. In Neural Information Processing, 2013 [Google Scholar]
  9. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015. [Google Scholar]
  10. G. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks. In NIPS, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.