Open Access
MATEC Web Conf.
Volume 231, 2018
12th International Road Safety Conference GAMBIT 2018 - “Road Innovations for Safety - The National and Regional Perspective”
Article Number 01016
Number of page(s) 8
Section Safe road infrastructure
Published online 16 November 2018
  1. Statistics Poland, Local Data Bank. Available at: Accessed: 17.09.2017, (2017) [Google Scholar]
  2. J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, H. Balakrishnan, The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring, in: Proceeding 6th Int. Conf. Mob. Syst. Appl. Serv. - MobiSys '08, pp. 29-39 (ACM Press, Breckenridge, USA, 2008). doi:10.1145/1378600.1378605 [CrossRef] [Google Scholar]
  3. K. Chen, G. Tan, M. Lu, J. Wu, CRSM: a practical crowdsourcing-based road surface monitoring system, Wirel. Networks. 22 pp. 765-779 (2016). doi:10.1007/s11276-015-0996-y [CrossRef] [Google Scholar]
  4. K. De Zoysa, C. Keppitiyagama, G.P. Seneviratne, W.W.A.T. Shihan, A public transport system based sensor network for road surface condition monitoring, in: Proc. 2007 Work. Networked Syst. Dev. Reg. - NSDR '07, (ACM Press, New York, 2007). doi:10.1145/1326571.1326585 [Google Scholar]
  5. A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, L. Selavo, Real time pothole detection using Android smartphones with accelerometers, in: 2011 Int. Conf. Distrib. Comput. Sens. Syst. Work., pp. 1-6 (IEEE, Barcelona, Spain, 2011). doi:10.1109/DCOSS.2011.5982206 [Google Scholar]
  6. G. Strazdins, A. Mednis, G. Kanonirs, R. Zviedris, L. Selavo, Towards Vehicular Sensor Networks with Android Smartphones for Road Surface Monitoring, in: Proc. 2nd Int. Work. Networks Coop. Objects, (Chicago, USA, 2011) [Google Scholar]
  7. Y. Tai, C. Chan, J. Yung-jen Hsu, Automatic Road Anomaly Detection Using Smart Mobile Device, in: Conf. Technol. Appl. Artif. Intell., (Hsinchu, Taiwan, 2010) [Google Scholar]
  8. K. Tomiyama, A. Kawamura, S. Nakajima, T. Ishida, M. Jomoto, A Mobile Profilometer For Road Surface Monitoring By Use Of Accelerometers, in: Proc. 7th Symp. Pavement Surf. Charact. SURF 2012, (Norfolk, VA, 2012) [Google Scholar]
  9. C. Koch, I. Brilakis, Pothole detection in asphalt pavement images, Adv. Eng. Informatics. 25 pp. 507-515 (2011). doi:10.1016/J.AEI.2011.01.002 [CrossRef] [Google Scholar]
  10. T. Kim, S.-K. Ryu, System and Method for Detecting Potholes based on Video Data, J. Emerg. Trends Comput. Inf. Sci. 5 pp. 703-709 (2014) [Google Scholar]
  11. Y. Jo, S. Ryu, Pothole Detection System Using a Black-box Camera., Sensors (Basel). 15 pp. 29316-31 (2015). doi:10.3390/s151129316 [CrossRef] [Google Scholar]
  12. I. Goodfellow, Y. Bengio, A. Courville, Deep learning. (MIT Press, 2016) [Google Scholar]
  13. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 770-778 (IEEE, 2016). doi:10.1109/CVPR.2016.90 [Google Scholar]
  14. General Directorate for National Roads and Motorways in Poland, Measurement subsystems. (2012) [Google Scholar]
  15. C. V. Suciu, T. Tobiishi, R. Mouri, Modeling and Simulation of a Vehicle Suspension with Variable Damping versus the Excitation Frequency, J. Telecommun. Inf. Technol. 1 pp. 83-89 (2012) [Google Scholar]
  16. P.C. Russell, J. Cosgrave, D. Tomtsis, A. Vourdas, L. Stergioulas, G.R. Jones, Extraction of information from acoustic vibration signals using Gabor transform type devices, Meas. Sci. Technol. 9 pp. 1282-1290 (1998). doi:10.1088/0957-0233/9/8/022 [CrossRef] [Google Scholar]
  17. T.-C. Liang, Y.-L. Lin, Ground vibrations detection with fiber optic sensor, Opt. Commun. 285 pp. 2363-2367 (2012). doi:10.1016/J.OPTCOM.2012.01.037 [CrossRef] [Google Scholar]
  18. M. Szczodrak, K. Marciniuk, A. Czyzewski, Road surface roughness estimation employing integrated position and acceleration sensor, in: 2017 Signal Process. Algorithms, Archit. Arrange. Appl., pp. 228-232 (IEEE, 2017). doi:10.23919/SPA.2017.8166869 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.