Open Access
MATEC Web Conf.
Volume 229, 2018
International Conference on Disaster Management (ICDM 2018)
Article Number 01005
Number of page(s) 7
Section Understanding Disaster Management
Published online 14 November 2018
  1. Perry, R.W., & Lindell, M.K. (1997). Aged Citizens in the Warning Phase of Disasters: Re-Examining the Evidence. International Journal of Aging and Human Development, 44 (4), 257–267. [CrossRef] [Google Scholar]
  2. Pelling, M. (2003). The vulnerability of Cities: Natural Disasters and Social Resilience. Earthscan Publications, London, UK. p. 48. [Google Scholar]
  3. Ahmed, A. K. (2006). Concepts and practices of ‘resilience’: A compilation from various secondary sources. a working paper prepared for coastal community resilience (CCR) program, U.S. Indian Ocean Tsunami warning systems (IOTWS) program. Technical report, IRG-Tetra Tech Joint Venture. [Google Scholar]
  4. Miller, F., Osbahr, H., Boyd, E., Thomalla, F., Bharwani, S., Ziervogel, G., Walker, B., Birkmann, J., van der Leeuw, S., & Rockstrˆom, J. (2010). Resilience and vulnerability: Complementary or conflicting concepts? Ecology and Society, 15 (3). [CrossRef] [Google Scholar]
  5. United Nations Office for Disaster Risk Reduction. (2007). Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters. United Nations International Strategy for Disaster Reduction. [Google Scholar]
  6. United Nations Office for Disaster Risk Reduction. (2015). Sendai Framework for Disaster Risk Reduction 2015–2030. United Nations International Strategy for Disaster Reduction. [Google Scholar]
  7. Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A placebased model for understanding community resilience to natural disasters. Global Environmental Change. 18: 598–606. [CrossRef] [Google Scholar]
  8. Cimellaro, G.P., Reinhorn, A.M., & Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32 (11): p. 3639–3649. [CrossRef] [Google Scholar]
  9. Adams, J. (1995). Risk. London: UCL Press. [Google Scholar]
  10. Drottz-Sjöberg, B.-M. (1991). Non-experts Definitions of Risk and Risk Perception (RHIZIKON: Risk Research Report No.3). Stockholm: Center for Risk research. [Google Scholar]
  11. Pennings, J.M.E. & Smidts, A. (2000). Assessing the Construct Validity of Risk Behavioral. Management Science, 46 (10), 1337–1348. [CrossRef] [Google Scholar]
  12. Pennings, J.M.E. & Smidts, A. (2003). The Shape of Utility Functions and Organizational Behavior. Management Science, 49 (9), 1251–1263. [CrossRef] [Google Scholar]
  13. Ittelson, W.H. (1978). Environmental Perception and Urban Experience. Environment and Behaviour, 10, 193–213. [CrossRef] [Google Scholar]
  14. Rachman, S.J. (1990). Fear and Courage. San Francisco: WF Freeman. [Google Scholar]
  15. Grothmann, T. & Reusswig, F. (2006). People at Risk of Flooding: Why Some Residents Take Precautionary Action While Others Do Not. Natural Hazards. 38, 101–120. [CrossRef] [Google Scholar]
  16. Bradford, R. A., O’Sullivan, J. J., Van der Craats, I. M., Krywkow, J., Rotko, P., Aaltonen, J., Bonaiuto, M., DeDominicis, S., Waylen, K. and Schelfaut, K. (2012). Risk Perception–Issues for Flood Management in Europe. Natural Hazards and Earth System Sciences, 12, 2299–2309. [CrossRef] [Google Scholar]
  17. Goidel, K., Kenny, C., Climek, M., Means, M., Swann, L., Sempier, T., & Schneider, M. (2012). Gulf Coast Climate Change Survey. ed. T. S. G. National Oceanic and Atmospheric Administration, Louisiana Sea Grant, Florida Sea Grant, Mississippi-Alabama Sea Grant Consortium. [Google Scholar]
  18. Seigler, W.C. (2014). Analysis of Hurricane Preparedness Levels and Evacuation Intent for South Carolina Coastal Residents. Thesis Degree of Master of Earth and Environmental Resources Management in Earth and Environmental Resources Management College of Arts and Sciences University of South Carolina. [Google Scholar]
  19. Maiko Ebisudani1 & Akihiro Tokai. (2016). Application of Risk Perception Theory to Develop a Measurement Framework for City Resilience: Case Study of Suita, Japan. Journal of Sustainable Development; Vol. 9, No. 5. 33-42. [CrossRef] [Google Scholar]
  20. Siebeneck, L.K., & Cova, T.J. (2008). Risk Perception Associated with the Evacuation and Return-entry Process of the Cedar Rapids, Iowa Flood. A Quick Response Research Report for the Natural Hazards Center, Boulder, Colorado. [Google Scholar]
  21. Dash, N., & Gladwin, H. (2005). Evacuation Decision Making and Behavioral Responses: Individual and Household. Prepare for Hurricane Focus Social Economic Workshop, February, 16–18. [Google Scholar]
  22. Douglas, M. (1978). Cultural Bias. Occasional Paper no. 35, Royal Anthropological Institute of Great Britain and Ireland. [Google Scholar]
  23. Thompson, M., Ellis, R. & Wildavsky, A. (1990). Cultural Theory. Boulder: Westview Press. [Google Scholar]
  24. Creswell, J.W. (2012). Educational Research: Planning, Conduct, and Evaluating Quantitative and Qualitative Research (Fourth Edition). Boston: Pearson. [Google Scholar]
  25. Sekaran, U., & Bougie, R. (2011). Research Methods for Business: A Skill Building Approach. United Kingdom: John Wiley & Sons, Ltd. [Google Scholar]
  26. Paton, D. (2006). Disaster Resilience: Integrating individual, community, institutional and environmental perspectives. Disaster resilience: An integrated approach: p. 305-316. [Google Scholar]
  27. Chang, S.E. & Shinozuka, M. (2004). Measuring improvements in the disaster resilience of communities. Earthquake Spectra. 20 (3): p. 739–755. [CrossRef] [Google Scholar]
  28. Howe, P.D. (2011). Hurricane preparedness as anticipatory adaptation: A case study of community businesses. Global Environmental Change. 21 (2): p. 711–720. [CrossRef] [Google Scholar]
  29. Gaillard, J.C. & Texier, P. (2010). Religions, natural hazards, and disasters: An introduction. Religion. 40 (2): p. 81–84. [CrossRef] [Google Scholar]
  30. Chua, Y.P. (2006). Kaedah Penyelidikan. Kuala Lumpur: McGraw Hill. [Google Scholar]
  31. Riggle, R. J., Edmondson, D. R., & Hansen, J. D. (2009). A Meta-analysis of the Relationship between Perceived Organizational Support and Job Outcomes: 20 Years of Research. Journal of Business Research, 62: 1027–1030. [CrossRef] [Google Scholar]
  32. Chin, W.W. (1998). The Partial Least Squares Approach to Structural Equation Modelling, in Hoyle, R.H. Statistical Strategies for Small Sample Research, Sage Publication, Inc., Thousand Oaks – California, 307-341. [Google Scholar]
  33. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. In: Sinkovics, R. R., Ghauri, P. N. (Eds.), Advances in International Marketing. Bingley: Emerald, 277–320. [Google Scholar]
  34. Fornell, C. & Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, vol XVIII, no. February, 39-50. [CrossRef] [Google Scholar]
  35. Gefen, D. & Straub, D. (2005). A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated Example. Communication of the Association for Information Systems, 16, 91 – 109. [CrossRef] [Google Scholar]
  36. Nunally, J.C. & Bernstein, I.H. (1994). Psychometric Theory. New York: McGraw-Hill [Google Scholar]
  37. Wetzels, M., Odekerken-Schroder, G., & van Oppen, C. (2009). Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. MIS Quarterly, 33 (1), 177–195. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.