Open Access
Issue
MATEC Web Conf.
Volume 228, 2018
2018 3rd International Conference on Circuits and Systems (CAS 2018)
Article Number 02008
Number of page(s) 4
Section Communications and Information Technology
DOI https://doi.org/10.1051/matecconf/201822802008
Published online 14 November 2018
  1. Chen Y, Yu W, Pock T. On learning optimized reaction diffusion processes for effective image restoration [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 5261-5269. [Google Scholar]
  2. Buades A, Coll B, Morel J M. A non-local algorithm for image denoising [C]. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, 2: 60-65. [Google Scholar]
  3. Zhang J, Zhao D, Gao W. Group-based sparse representation for image restoration [J]. IEEE Transactions on Image Processing, 2014, 23 (8): 3336-3351. [CrossRef] [Google Scholar]
  4. Bar L, Chan T F, Chung G, et al. Mumford and Shah model and its applications to image segmentation and image restoration [J]. Handbook of Mathematical Methods in Imaging, 2014: 1-52. [Google Scholar]
  5. Mao X, Shen C, Yang Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections [C]. Advances in neural information processing systems. 2016: 2802-2810. [Google Scholar]
  6. Katsaggelos A K. Digital image restoration [M]. Springer Publishing Company, Incorporated, 2012. [Google Scholar]
  7. Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems [J]. IEEE Transactions on Image Processing, 2009, 18 (11): 2419-2434. [Google Scholar]
  8. Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one [J]. Multiscale Modeling & Simulation, 2005, 4 (2): 490-530. [Google Scholar]
  9. Starck J L, Candès E J, Donoho D L. The curvelet transform for image denoising [J]. IEEE Transactions on image processing, 2002, 11 (6): 670-684. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image processing, 2006, 15 (12): 3736-3745. [CrossRef] [Google Scholar]
  11. Buades A, Coll B, Morel J M. A non-local algorithm for image denoising [C]. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, 2: 60-65. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.