Open Access
MATEC Web Conf.
Volume 220, 2018
2018 The 2nd International Conference on Mechanical, System and Control Engineering (ICMSC 2018)
Article Number 07003
Number of page(s) 5
Section Fluid Mechanics and Dynamics Analysis
Published online 29 October 2018
  1. Liou J C, Johnson N L, Hill N M. Stabilizing the future LEO debris Environment with active debris removal [J]. Orbital Debris Quarterly News, 2008, 12 (4): 5–6. [Google Scholar]
  2. Liou J-C, Johnson N L. A sensitivity study of the effectiveness of active debris removal in LEO [J]. Acta Astronautica, 2009, 64 (2): 236–43. [CrossRef] [Google Scholar]
  3. Liou J-C. An active debris removal parametric study for LEO environment remediation [J]. Advances in Space Research, 2011, 47 (11): 1865–76. [CrossRef] [Google Scholar]
  4. Bastida B, Krag H. Analyzing the criteria for a stable environment [C]. Girdwood, Alaska: The AAS/AIAA Astrodynamics Specialist Conference, 2011. [Google Scholar]
  5. Kassebom M, Koebel D, Tobehn C, et al. ROGER-An advanced solution for a geostationary service satellite; proceedings of the The 54th International Astronautical Congress, Bremen, Germany, F, 2003 [C]. International Astronautical Federation, IAF. [Google Scholar]
  6. Bremen A S. Robotic Geostationary Orbit Restorer (ROGER) Phase A Final Report [R]. ESA, 15706/01/NL/WK, 2003. [Google Scholar]
  7. Bischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer [J]. Science and Technology Series, 2004, 109: 183–93. [Google Scholar]
  8. Wilde, K., Gardoni, P. and Fujino, Y.: Seismic Response of Base-isolated Structures with Shape Memory Alloy Damping Devices, Proc. SPIE, 3043 (1997), pp. 122–133. [CrossRef] [Google Scholar]
  9. Pearson J, Levin E, Oldson J, et al. EDDE, Electrodynamic Debris Eliminator: New frontiers in space traffic management; proceedings of the The 4th IAASS Conference ‘Making Safety Matter’, Huntsville, USA, F, 2010 [C]. European Space Agency. [Google Scholar]
  10. Nakasuka S, Aoki T, Ikeda I, et al. “Furoshiki satellite”-a large membrane structure as a novel space system [J]. Acta Astronautica, 2001, 48(5-12): 461–8. [CrossRef] [Google Scholar]
  11. Nakasuka S, Funane T, Nakamura Y, et al. Sounding rocket flight experiment for demonstrating “Furoshiki Satellite” for large phased array antenna [J]. Acta Astronautica, 2006, 59: 200–5. [CrossRef] [Google Scholar]
  12. Nakasuka S, Kaya N. Quick release on experiment results of mesh deployment and phased array antenna by S-310-36 [J]. The Forefront of Space Science [online], 2006. [Google Scholar]
  13. Kaya N, Iwashita M, Tanaka K, et al. Rocket experiment on microwave power transmission with Furoshiki deployment [J]. Acta Astronautica, 2009, 65(1-2): 202–5. [CrossRef] [Google Scholar]
  14. Hobbs S. Disposal orbits for GEO spacecraft: A method for evaluating the orbit height distributions resulting from implementing IADC guidelines [J]. Advances in Space Research, 2010, 45 (8): 1042–9. [CrossRef] [Google Scholar]
  15. Etter J R, Hedding L R. An Experimental Investigation of the Longitudinal Dynamics of Long Kevlar Tethers [J]. AIAA, 1992. [Google Scholar]
  16. Nishinari K. Discrete modeling of a string and analysis of a loop soliton [J]. Journal of Applied Mechanics, 1998, 65 (3): 737–47. [CrossRef] [Google Scholar]
  17. Chen Q, Yang L P. Dynamic Modeling and Simulation of Orbital Net-capture Systems [C]. Montreal, Quebec, Canada: The 14th CASI Astronautics Conference, 2008. [Google Scholar]
  18. Zhang Q B, Sun G P, Feng Z W. Dynamics Modeling and Differentia Analysis Between Space and Ground for Flexible Cable Net [J]. Journal of Astronautics, 2014, 35 (8): 871–7. [Google Scholar]
  19. Gao X L. Simulation and Analysis on Characteristic of Space-Net System Capturing Dynamics[D]. Changsha, China: National University of Defense Technology 2011. [Google Scholar]
  20. Yang F. Research on Dynamic and Experiment of the Space net[D]. Changsha, China: National University of Defense Technology 2011. [Google Scholar]
  21. L. Liu, J. Shan, Y. Ren, Z. Zhou. Deployment dynamics of throw-net for active debris removal, in: 65th International Astronautical Congress, Toronto, Canada, 2014. [Google Scholar]
  22. Minghe Shan, Jian Guo. Deployment dynamics of tethered-net for space debris removal [J]. Acta Astronautica, 2017, 132: 293–302. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.