Open Access
MATEC Web Conf.
Volume 217, 2018
2018 International Conference on Vibration, Sound and System Dynamics (ICVSSD 2018)
Article Number 01004
Number of page(s) 7
Section Vibration
Published online 17 October 2018
  1. Norton, M. and Karczub, D. (2003). Fundamentals of Noise and Vibration Analysis for Engineers. Second Edition. Cambridge University Press. [CrossRef] [Google Scholar]
  2. Patil, M.S., Mathew, J. and RajendraKumar, P.K. (2008). Bearing Signature Analysis as a Medium for Fault Detection: A Review. Journal of Tribology. 130:1 014001–7. [CrossRef] [Google Scholar]
  3. Williams, T. (2001). Rolling element bearing diagnostics in run-to-failure lifetime testing. Mechanical Systems and Signal Processing. 15:5 979–993. [CrossRef] [Google Scholar]
  4. Halme, J. and Anderson, P. (2009). Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics. VTT Technical Research Centre of Finland. 224:J: 377–393. [Google Scholar]
  5. FAG Rolling bearing damage: Recognition of damage and bearing inspection. (1996). Publication no. WL 82 102/2 ED. [Google Scholar]
  6. Maru, M.M., Castillo, R.S. and Padovese, L.R. (2005). Detection of solid contamination in rolling bearing operation through mechanical signature analysis. In: Proceedings of 12th International Congress on Sound and Vibration. Portugal. [Google Scholar]
  7. Serrato, R., Maru, M.M., Padovese, L.R. (2005). Effect of lubricant oil viscosity and contamination on the mechanical signature of roller bearings. In: Proceedings of 12th International Congress on Sound and Vibration. Portugal. [Google Scholar]
  8. Serrato, R., Maru, M.M. and Padovese, L.R. (2007). Effect of lubricant viscosity grade on mechanical vibration of roller bearings. Tribology International. 40:8 1270–1275. [CrossRef] [Google Scholar]
  9. Wunsch, F. (1992). Noise characteristic of lubricating greases used for anti-friction bearings. NLGI Spokesman 56:16–21. [Google Scholar]
  10. Boškoski, P., Petrovčič, J., Musizza, B. and Juričić, D. (2010) Detection of lubrication starved bearings in electrical motors by means of vibration analysis, Tribology International. 43:9 1683–1692 [CrossRef] [Google Scholar]
  11. Ebert, F.J. (2010). Fundamentals of Design and Technology of Rolling Element Bearings. Chinese Journal of Aeronautics, 23(1):123–136. [CrossRef] [Google Scholar]
  12. Cann, P. M. E., Damiens, B. and Lubrecht, A. A. (2004). The transition between fully flooded and starved regimes in EHL. Tribology International 37: 859–864. [CrossRef] [Google Scholar]
  13. Cann, P. M. E. (1999). Starved grease lubrication of rolling contacts. Tribology Transactions. 42: 867–873. [CrossRef] [Google Scholar]
  14. Vengudusamy, B., Kuhn, M., Rankl, M. and Spallek, R. (2016). Film forming behavior of greases under starved and fully flooded EHL conditions, Tribology Transactions. 59:1 62–71 [CrossRef] [Google Scholar]
  15. Cen, H., Lugt, P.M and Morales-Espejel, G. (2014). Film thickness of mechanically worked lubricating grease at very low speeds, Tribology Transactions. 57:6 1066–1071. [CrossRef] [Google Scholar]
  16. Hamrock, B.J., Schmid, S.R. and Jacobson, B.O. (1999). Fundamental of Machine Elements. Ohio. Mc Graw Hill. [Google Scholar]
  17. Akbarzadeh, S. and Khonsari, M.M. (2011). Experimental and theoretical investigation of running-in. Tribology International. 44:2 92–100 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.