Open Access
Issue
MATEC Web Conf.
Volume 217, 2018
2018 International Conference on Vibration, Sound and System Dynamics (ICVSSD 2018)
Article Number 01002
Number of page(s) 7
Section Vibration
DOI https://doi.org/10.1051/matecconf/201821701002
Published online 17 October 2018
  1. P. Castellini, M. Martarelli, and E. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mechanical Systems and Signal Processing, Vol. 20, No. 6, pp. 1265–1285, 2006. [CrossRef] [Google Scholar]
  2. A. Davis, K. L. Bouman, J. G. Chen et al., “Visual vibrometry: Estimating material properties from small motions in video.” pp. 5335–5343. [Google Scholar]
  3. A. Davis, M. Rubinstein, N. Wadhwa et al., “The visual microphone: passive recovery of sound from video,” 2014. [Google Scholar]
  4. D. A. Ehrhardt, M. S. Allen, S. Yang et al., “Full-field linear and nonlinear measurements using continuous-scan laser doppler vibrometry and high speed three-dimensional digital image correlation,” Mechanical Systems and Signal Processing, Vol. 86, pp. 82–97, 2017. [CrossRef] [Google Scholar]
  5. E. P. Simoncelli, and W. T. Freeman, “The steerable pyramid: A flexible architecture for multi-scale derivative computation.” pp. 444–447. [Google Scholar]
  6. B. D. Lucas, and T. Kanade, “An iterative image registration technique with an application to stereo vision,” 1981. [Google Scholar]
  7. B. K. Horn, and B. G. Schunck, “Determining optical flow,” Artificial intelligence, Vol. 17, no. 1-3, pp. 185–203, 1981. [CrossRef] [Google Scholar]
  8. S. Mallat, A wavelet tour of signal processing: Academic press, 1999. [Google Scholar]
  9. Y. Yu, and J. Wang, “Highly Accurate Estimation of Sub-pixel Motion Using Phase Correlation.” pp. 186–193. [Google Scholar]
  10. N. Wadhwa, M. Rubinstein, F. Durand et al., “Phase-based video motion processing,” ACM Transactions on Graphics (TOG), Vol. 32, No. 4, pp. 80, 2013. [CrossRef] [Google Scholar]
  11. I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex wavelet transform,” IEEE signal processing magazine, Vol. 22, No. 6, pp. 123–151, 2005. [CrossRef] [Google Scholar]
  12. R. Anderson, N. Kingsbury, and J. Fauqueur, “Determining multiscale image feature angles from complex wavelet phases.” pp. 490–498. [Google Scholar]
  13. T. Gautama, and M. Van Hulle, “A phase-based approach to the estimation of the optical flow field using spatial filtering,” IEEE Transactions on Neural Networks, Vol. 13, No. 5, pp. 1127–1136, 2002. [CrossRef] [Google Scholar]
  14. H. K. Sevindir, and C. Yazıcı, “Comparison of Wavelet and Shearlet Transforms for Medical Images,” Appl. Math, Vol. 10, No. 4, pp. 1447–1452, 2016. [Google Scholar]
  15. G. Kutyniok, and D. Labate, “Introduction to shearlets,” Shearlets, pp. 1–38: Springer, 2012. [Google Scholar]
  16. D. Scharstein, H. Hirschmüller, Y. Kitajima et al., “High-resolution stereo datasets with subpixel-accurate ground truth.” pp. 31–42. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.