Open Access
Issue
MATEC Web Conf.
Volume 215, 2018
The 2nd International Conference on Technology, Innovation, Society and Science-to-Business (ICTIS 2018)
Article Number 02013
Number of page(s) 7
Section Science to Business
DOI https://doi.org/10.1051/matecconf/201821502013
Published online 16 October 2018
  1. M.I. Stojanovska, B.T. Šoptrajanov, V.M. Petruševski. Addressing Misconceptions about the Particulate Nature of Matter among Secondary-School and High-School Students in the Republic of Macedonia.Creative Education. 3 (5): 619–631. (2012) [CrossRef] [Google Scholar]
  2. M.H. Chiu. A National Survey of Students’ Conceptions of Chemistry in Taiwan. International Journal of Science Education. 29 (4): 421–452. (2005) [CrossRef] [Google Scholar]
  3. W.H. Cliff, Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Home-ostasis. Advances in Physiology Education. 33: 323–328. (2009) [CrossRef] [Google Scholar]
  4. M. Çalýk, A. Ayas, J.V. Ebenezer. A Review of Solution Chemistry Studies: Insights into Students’ Conceptions. Journal of Science Education and Technology. 14: 29–50. (2005) [CrossRef] [Google Scholar]
  5. A. Badrian, T. Abdinejad, A. Naseriazar. A Cross-Age Study of Iranian Students’ Various Conceptions About the Particulate Nature of Matter. Journal of Turkish Science Education. 8: 49–63. (2011) [Google Scholar]
  6. W. Vos, A.H. Verdonk. The Particulate Nature of Matter in Science Education and in Science. Journal of Research in Science Teaching. 33 (6): 657–664. (1996) [CrossRef] [Google Scholar]
  7. K. Skamp. Atoms and Molecules in Primary Science: What Are Teachers to Do? Australian Journal of Education in Chemistry. 69: 510. (2009) [Google Scholar]
  8. E.J. Yezierski, J.P. Birk, Misconceptions about the Particulate Nature of Matter.Using Animations to Close the Gender Gap. Journal of Chemical Education. 83 (6): 954–96. (2006) [CrossRef] [Google Scholar]
  9. D. Benson, M. Wittrock, M. Baur. Students’ Pre-conceptions of the Nature of Gases. Journal of Research in Science Teaching. 30 (6): 587–597. (1993) [CrossRef] [Google Scholar]
  10. D. Krnel, S.S. Glazar, R. Watson, The Development of the Concept of “Matter”: A Cross-Age Study of How Children Classify Materials. Science Education. 87 (5): 621–639. (2003) [CrossRef] [Google Scholar]
  11. D. Krnel R. Watson S.A. Glazar. Survey of Research Related to the Development of the Concept of ‘Matter’. International Journal of Science Education. 20: 257–389. (1998) [CrossRef] [Google Scholar]
  12. O. Lee, D.C. Eichinger, C.W. Anderson, G.D. Berkheimer, T.D. Blakeslee, Changing Middle School Students’ Conceptions of Matter and Molecules. Journal of Research in Science Teaching. 30: 249–270. (1993) [CrossRef] [Google Scholar]
  13. H.K. Boo, J.R. Watson, Progression in High School Students’ (aged 16–18) Conceptualizations about Chemical Reactions in Solution. Science Education. 85 (5): 568–585. (2001) [CrossRef] [Google Scholar]
  14. J. Surif. Kajian Perbandingan Pemikiran Saintifik Pelajar Malaysia dengan United Kingdom. Universiti Teknologi Malaysia: Tesis Ph.D. (2010) [Google Scholar]
  15. N. Canpolat. Turkish Undergraduates’ Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure. International Journal of Science Education. 28 (15):1757–1770. (2006) [CrossRef] [Google Scholar]
  16. H.D. Barke, A. Hazari, S. Yitbarek. Misconception in Chemistry. (Springer, German, 2009) [Google Scholar]
  17. R. Day, Visual Cognition in Understanding Biology Labs; Can It Be Connected to Conceptual Change? A Paper Presented at the National Association of Research in Science Teaching Conference, Van-couver, Canada. (2004). [Google Scholar]
  18. A.G. Harrison D.F Treagust. Secondary Students’ Mental Models of Atoms and Molecules: Implications for Teaching Chemistry. Science Education. 80 (5): 509–534. (1996) [CrossRef] [Google Scholar]
  19. V.M. Williamson, M.R. Abraham, The Effects of Computer Animation on the Particulate Mental Methods of College Chemistry Students. Journal of Research in Science Teaching. 32 (5): 521–534, (1995). [CrossRef] [Google Scholar]
  20. J.J. Hesse, C.W. Andersson, Students’ Conceptions of Chemical Change. Journal of Research in Science Teaching. 29 (3): 277–299. (1992) [CrossRef] [Google Scholar]
  21. M.B. Nakhleh, A. Samarapungavan. Elementary School Children’s Beliefs about Matter. Journal of Research in Science Teaching. 36 (7): 777–805. (1999) [CrossRef] [Google Scholar]
  22. J.D. Bradley, M. Brand, Stamping Out Misconceptions. Journal of Chemical Education. 62(4): 318. (1995) [CrossRef] [Google Scholar]
  23. A.H. Haidar, M.R. Abraham, A Comparison of Applied and Theoretical Knowledge of Concepts Based on the Particulate Theory of Matter. Journal of Research in Science Teaching. 28 (10): 919–938. (1991) [Google Scholar]
  24. B. Bucat, M. Mocerino. Introduction: Macro, Sub-micro and Symbolic Representations and the Relationship between Them: Key Models in Chemical Education. In: Gilbert, J. K. dan Treagust, D. Multiple Representations in Chemical Education. (Springer, London. 11–29. (2009) [CrossRef] [Google Scholar]
  25. B. Mazur, Imagining Numbers (particularly the square root of minus fifteen). New York: Farrar, Straus and Giroux. (2003) [Google Scholar]
  26. B. Gaut, Creativity and Imagination. In: B. Gaut. and P. Livingston. (Eds.). The Creation of Art (pp. 148–173). Cambridge, England: Cambridge University Press. (2003) [Google Scholar]
  27. G. Heath, Exploring the Imagination to Establish Frameworks for Learning.Studies in Philosophy and Education. 27 (2): 115–123. (2008) [CrossRef] [Google Scholar]
  28. P. Bouldin, An Investigation of the Fantasy Predisposition and Fantasy Style of Children with Imaginary Companions. The Journal of Genetic Psychology: Research and Theory on Human Development. 167 (1): 17–29. (2006) [CrossRef] [Google Scholar]
  29. S.W. Russ. Play and Creativity: Developmental Issues. Scandinavian Journal of Educational Research. 47 (3): 291–303. (2003) [CrossRef] [Google Scholar]
  30. S. Tindall-Ford, J. Sweller. Altering the Modality of Instructions to Facilitate Imagination: Interactions between the Modality and Imagination Effects. Instructional Science. 34 (4): 343–365. (2006) [CrossRef] [Google Scholar]
  31. W. Leahy, J. Sweller. Interactions among the Imagination, Expertise Reversal and Element Interactivity Effects. Journal of Experimental Psychology: Applied. 11 (4): 266–276. (2005) [CrossRef] [Google Scholar]
  32. A.M. Glenberg, T. Gutierrez, J.R. Levin, S. Japuntich, M.P. Kaschak. Activity and Imagined Activity Can Enhance Young Children’s Reading Comprehension. Journal of Educational Psychology. 96: 424–436. (2004) [CrossRef] [Google Scholar]
  33. M. Smith, R. Mathur. Children’s Imagination and Fantasy: Implications for Development, Education, and Classroom Activities. Research in the Schools. 16 (1): 52–63. (2009) [Google Scholar]
  34. O. Taştan, E. Yalçınkaya, Y. Boz, Effectiveness of Conceptual Change Text-Oriented Instruction on Students’ Understanding of Energy in Chemical Reactions. Journal of Science Education and Technology. 17 (5): 444–453. (2008). [CrossRef] [Google Scholar]
  35. J.W. Creswell, Qualitative Inquiry and Research Design: Choosing among Five Approaches. 2nded. (Sage, London, 2007). [Google Scholar]
  36. N.K. Denzin, Y.S. Lincoln, Y. S. Handbook of Qualitative Research, (Routledge, London. 2004). [Google Scholar]
  37. S.B. Merriam, Qualitative Research and Case Study Application in Education. Revised and Expanded from Case Study Research in Education. (Jossey-Bass Publishers, San Francisco. 2002). [Google Scholar]
  38. M.Q. Patton, Qualitative Research and Evaluation Methods (3rded.). (Thousand Oaks Sage, CA: 2002). [Google Scholar]
  39. S. Marican. Kaedah Penyelidikan Sains Sosial. (Pearson Prentice Hall, Selangor. 2005) [Google Scholar]
  40. S.M. Al-Balushi, Exploring Omani Pre-Service Science Teachers’ Imagination at the Microscopic Level in Chemistry and Their Use of the Particulate Nature of Matter in Their Explanations. The University of Iowa: Ph.D Thesis. (2003). [Google Scholar]
  41. D.L. Gabel, K.V. Samuel, D. Hunn. Understanding the Particulate Nature of Matter. Journal of Chemical Education. 64 (8): 695–697. (1987) [CrossRef] [Google Scholar]
  42. P. Kokkotas, I. Vlachos. Teaching the Topic of Particulate Nature of Matter in Prospective Teachers’ Training Courses. International Journal of Science Education. 20 (3): 291–303. (1998). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.