Open Access
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 04021
Number of page(s) 6
Section Computers
Published online 05 October 2018
  1. C. Bartosiak, R. Kasprzyk, Z. Tarapata, Application of Graphs and Networks Similarity Measures for Analyzing Complex Networks, Biuletyn Instytutu Systemów Informatycznych, vol. 7, 1-7 (2011) [Google Scholar]
  2. R. Diestel, Graph Theory, Springer-Verlag, Berlin Heidelberg, (2005) [Google Scholar]
  3. R. Dreżeski, W. Filipkowski, System Supporting Money Laundering Detection, Digital Investigation, Vol. 9(1), 8-21, (2012) [CrossRef] [Google Scholar]
  4. Cz. Jedrzejek, J. Bak, M. Falkowski, Graph Mining for Detection of a Large Class of Financial Crimes, Proceedings of the 17th International Conference on Conceptual Structures, Moscow, Russia, 26-31 July, (2009) [Google Scholar]
  5. G. Krishnapriy, M. Prabakaran, Identifying Money Laundering Groups in MultiMode Network Using Data Mining, International Journal of Enhanced Research in Science Technology & Engineering, Vol. 3(5), 291-295 (2014). [Google Scholar]
  6. Zhongfei Zhang, Philip S. Yu, Applying Data Mining in Investigating Money Laundering Crimes, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24-27, (2003) [Google Scholar]
  7. G. Krishnapriya, M. Prabakaran, A Probabilistic Model Using Graph Based Sequential Pattern Mining Algorithm for Money Laundering Identification, International Journal of Innovative Research and Development, Vol. 2(7), 497-502 (2013). [Google Scholar]
  8. X. Luo, Suspicious transaction detection for anti-money laundering, International Journal of Security and Its Applications, Vol. 8(2), 157-166 (2014). [CrossRef] [Google Scholar]
  9. S. Raza, S. Haider, Suspicious activity reporting using dynamic Bayesian networks, Procedia Computer Science, 3, 987-991 (2011) [CrossRef] [Google Scholar]
  10. R. Kasprzyk, Z. Tarapata, K. Banach, M. Parada, D. Bocian, Narzędzie informatyczne IAFEC Graphs do wykrywania zależności między elementami zbiorów rejestrów publicznych, w: M. Kiedrowicz (red.), Zaawansowane modele i metody wykorzystywane w zwalczaniu przestępstw finansowych, WAT, Warszawa, (2018) [Google Scholar]
  11. R. Kasprzyk, Complex Systems Evolution Models and Methods to Investigate Their Characteristics for Computer Identification of Potential Crises (Polish title: Modele ewolucji systemów złożonych i metody badania ich charakterystyk dla potrzeb komputerowej identyfikacji potencjalnych sytuacji kryzysowych), PhD thesis, Military University of Technology, Warsaw, Poland, (2012) [Google Scholar]
  12. Z. Tarapata, R. Kasprzyk, Graph-based optimization method for information diffusion and attack durability in networks, Lecture Notes in Artificial Intelligence, Vol. 6086, 698-709, (2010) [Google Scholar]
  13. Z. Tarapata, Multicriteria weighted graphs similarity and its application for decision situation pattern matching problem, Proceedings of the 13th IEEE/IFAC International Conference on Methods and Models in Automation and Robotics (MMAR'2007), 27-30 August, Szczecin, Poland, pp. 1149-1155, (2007) [Google Scholar]
  14. M. Chmielewski, M. Paciorkowska, M. Kiedrowicz, A semantic similarity evaluation method and a tool utilised in security applications based on ontology structure and lexicon analysis, Fourth International Conference on Mathematics and Computers in Sciences and in Industry, pp. 224-233, DOI: 10.1109/MCSI.2017.46 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.