Open Access
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 02009
Number of page(s) 13
Section Systems
Published online 05 October 2018
  1. Rolls-Royce plc, 1996; The Jet Engine; Fifth Edition, ISBN 0902121 235 [Google Scholar]
  2. Kourosh R., Andrew Gray, Neural Network Based Model Reference Controller for Active Queue Management of TCP Flows, Jet Propulsion Laboratory, California Institute of Technology, Pasadema CA91109, IEEEAC paper #1408, Version 3, 22nd Nov. 2004. [Google Scholar]
  3. Simond Haykin, Kalman Filtering and Neural Networks, ISBN 0-471-22154-6, Canada 2002. [Google Scholar]
  4. A. Eid, M. Abdel-Salam, H. El-Kishky, T. El-Mohandes, Simulation and transient analysis of conventional and advanced aircraft electric power systems with harmonics mitigation, Electric Power Systems Research, 79, 4, pp. 660-668 (2009) [CrossRef] [Google Scholar]
  5. J. S. Ra, A. K. Al-Suiada, O. Y. M. Al-Rawi, Power Distribution Systems Reconfiguration Bases on Artificial Neural Network and Genetic Algorithm for Loss Reduction, IFRSA International Journal of Electronics Circuits and Systems, 2, 1, pp. 26-36 (2013) [Google Scholar]
  6. Glenn D. Schilling, Modelling Aircraft Fuel Consumption with a Neural Network, M.Sc. Thesis, The Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, US (1997) [Google Scholar]
  7. “Intelligent Flight Control System”, NASA Facts, Dryden Flight Research Centre (2002) [Google Scholar]
  8. Anthony J. Calise, Rolf T. Rysdyk, Nonlinear Adaptive Flight Control using Neural Networks, IEEE Control System Magazine, 18, 6, pp. 14-25 (1998) [CrossRef] [Google Scholar]
  9. S. S. Tayarani-Bathaie, Z.N. Sadough Vanini, K. Khorasani, Dynamic neural network-based fault diagnosis of gas turbine engines, Neurocomputing 125, pp. 153-165 (2014) [CrossRef] [Google Scholar]
  10. I. Al-Dein Al Zyoud, K. Khorasani, Neural Network-based Actuator Fault Diagnosis for Attitude Control Subsystem of a Satellite, World Automation Congress, Budapest, Hungary (2006) [Google Scholar]
  11. A. Valdes, K. Khorasani, L. Ma, Dynamic Neural Network-Based Fault Detection and Isolation for Thrusters in Formation Flying of Satellites, Advances in Neural Networks - ISSN 2009, Lecture Notes in Computer Science, 553, Springer, Berlin, Heidelberg, pp. 780-793 (2009) [Google Scholar]
  12. R. Mohammadi, E. Naderi, K. Khorasani, S. Hashtrudi-Zad, Fault Diagnosis of Gas Turbine Engines by Using Dynamic Neural Networks, ASME Turbo Expo 2010: Power for Land, Sea, and Air, 3, Glasgow, UK (2010) [Google Scholar]
  13. A. J. Chipperfield, B. Bica, P. J. Fleming, Fuzzy scheduling control of a gas turbine aero-engine: a multiobjective approach, IEEE Transactions on Industrial Electronics, 49, 3, pp. 536-548 (2002) [CrossRef] [Google Scholar]
  14. A. Zilouchian, M. Juliano, T. Healy, J. Davis, Design of a fuzzy logic controller for a jet engine fuel system, Control Engineering Practice, 8, 8, pp. 873-883 (2000) [CrossRef] [Google Scholar]
  15. L. C. Jaw, S. Garg, Propulsion Control Technology Development in the United States (A Historical Perspective), NASA Glenn Research Center, Cleveland, Ohio, USA (2005) [Google Scholar]
  16. J. S. Litt, D. L. Simon, S. Garg, A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems, NASA Glenn Research Center, Cleveland, Ohio, USA (2005) [Google Scholar]
  17. P. J. Antsaklis, K. M. Passino, An Introduction to Intelligent and Autonomous Control, Kluwer Academic, Boston, Mass, USA (1993) [Google Scholar]
  18. M. Pakmehr, B. Moslehi, J. Costa, R. J. Black, V. Sotoudeh, A. R. Behbahani, A Review of Fibre Optic Networks for Turbine Engine Instrumentation Channel: Control, PHM, and Test Cell Applications, 5th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland OH (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.