Open Access
Issue
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 02006
Number of page(s) 6
Section Systems
DOI https://doi.org/10.1051/matecconf/201821002006
Published online 05 October 2018
  1. Palmer S, Sculpher M, Phillips Z, Robinson M, Ginnelly L, Bakhai A et al. Management of non-ST elevation acute coronary syndrome: how cost-effective are glycoprotein IIb/IIIa antagonists in the U.K. National Health Service?. International J Cardiology 100 (2005) 229-40 [CrossRef] [Google Scholar]
  2. https://amulet.wim.mil.pl [Google Scholar]
  3. Feller, W. (2000). An Introduction to Probability Theory and its Applications, John Wiley and Sons, New York and Chichester, vol.2 [Google Scholar]
  4. P. Hänggi, P. Talkner, and M. Borkovec. Reaction-rate theory: Fifty years after Kramers, Rev. Mod. Phys., 62:251-341, (1990) [CrossRef] [Google Scholar]
  5. H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reaction, Physica (Utrecht), 7:284-304, (1940) [CrossRef] [Google Scholar]
  6. N. V. Agudov and B. Spagnolo, Noise-enhanced stability of periodically driven metastable states, Phys. Rev. E, 64:035102-1-4(R), (2001) [CrossRef] [Google Scholar]
  7. W. Horsthemke and R. Lefever. Noise-inducted transitions. Theory and applications in physics, chemistry, and biology, Springer Verlag, Berlin, (1984) [Google Scholar]
  8. A. Fronczak, P. Fronczak Biased random walks on complex networks: the role of local navigation rules arxiv:0709.2231 (Sept. 2007) [Google Scholar]
  9. T.D. Frank, A Langevin approach for the microscopic dynamics of nonlinear Fokker-Planck equations, Physica A 301, 52-62, (2001). doi:10.1016/S0378-4371(01)00345-4 [CrossRef] [Google Scholar]
  10. T.D. Frank, Generalized Fokker-Planck equations derived from generalized linear nonequilibrium thermodynamics, Physica A 310, 397-412, (2002). doi:10.1016/S0378-4371(02)00821-X [CrossRef] [Google Scholar]
  11. T.D. Frank, Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations, Physica A 331, 391-408, (2004). doi:10.1016/j.physa.2003.09.056 [CrossRef] [MathSciNet] [Google Scholar]
  12. T.D. Frank, Nonlinear Fokker-Planck Equations. Fundamental and Applications, Springer (2005) [Google Scholar]
  13. T.D. Frank, Nonextensive cutoff distributions of postural sway for the old and the young, Physica A 388, 2503-2510, (2009). doi:10.1016/j.physa.2009.03.003 [CrossRef] [Google Scholar]
  14. T.D. Frank, A. Daffertshofer, Exact time-dependent solutions of the Rényi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal, Physica A, 285, 351-366, (2000). doi:10.1016/S0378-4371(00)00178-3 [CrossRef] [Google Scholar]
  15. T.D. Frank, R. Friedrich, Estimating the nonextensivity of systems from experimental data: a nonlinear diffusion equation approach, Physica A 347, 65-76, (2005). doi:10.1016/j.physa.2004.08.031 [CrossRef] [Google Scholar]
  16. C. Tsallis, Nonextensive statistics: theoretical. Experimental and computational evidences and connections, Braz. J. Phys. 29, 1-35, (1999). doi:10.1590/S0103-97331999000100002 [NASA ADS] [CrossRef] [Google Scholar]
  17. C. Tsallis, Introduction to Nonextensive Statistical Mechanics, Springer (2009) [Google Scholar]
  18. C. Tsallis, D. Bukman, Anomalous diffusion in the presence of external forces: exact time-dependent solutions and their rhermostatical basis Phys. Rev. E 54, R2197-R2200, (1996). doi:10.1103/PhysRevE.54.R2197 [Google Scholar]
  19. Z. Wu, J. Zhao, J. Yim, H. Li, Nonlinear diffusion equations, World Scientific, (2001) [CrossRef] [Google Scholar]
  20. A. Vazquez, J. G. Oliveira, Z. Dezso, K.-I. Goh, I. Kondor, and A.-L. Barabasi, Phys.Rev. E 73, 036127 (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.