Open Access
Issue
MATEC Web Conf.
Volume 203, 2018
International Conference on Civil, Offshore & Environmental Engineering 2018 (ICCOEE 2018)
Article Number 01025
Number of page(s) 12
Section Coastal and Offshore Engineering
DOI https://doi.org/10.1051/matecconf/201820301025
Published online 17 September 2018
  1. J. Wichers, A simulation ModeL for a single Point Moored Tanker, PhD Dissertation, Delft University, (1988). [Google Scholar]
  2. J. M. Heurtier, P. Buhan, E. Fontane, C. Cunff, F Biolley and C. Berhault, CoupLed Dynamic Response of Moored FPSO with Risers, Proceedings of the Eleventh ISOPE Conference, Norway, I, pp 319 326, (2001) [Google Scholar]
  3. C. Zhao, Y. Bai and Y. Shin, Extreme Response and Fatigue Damages for FPSO Structural AnaLysis, Proceedings of the Eleventh ISOPE Conference, Norway, I, pp 301-308, (2001) [Google Scholar]
  4. M. H. Kim, B. J. Koo, R. M. Mercier and E. G. Ward, Vessel/ Mooring/ Riser CoupLed Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment, Ocean Engineering, 32, pp 1780-1802, (2005) [CrossRef] [Google Scholar]
  5. G. Wang, L. Sun and S. Ma, Time Domain Analysis of FPSO Tanker Responses in Tandem Offloading Operation, Journal of Marine science Application, 9, pp 200-207, (2010) [CrossRef] [Google Scholar]
  6. I. Catipovic, V. Coric and V. Vukcevic, Dynamics of FPSO with Polyester Mooring Lines, Proceedings of Twenty-second ISOPE conference, Greece, pp 996-1003, (2012) [Google Scholar]
  7. A. Tahar and M. H. Kim, Coupled-Dynamic Analysis of Floating Structures with PoLyester Mooring Lines, Ocean Engineering, 35, pp 1676-1685, (2008) [CrossRef] [Google Scholar]
  8. K. H. Kim and Y. Kim, Comparative Study on Ship Hydrodynamics Based on Newmann-Kelvin and Double Body Linearizations in Time Domain AnaLysis, ISOPE, 20(4) pp 265-274, (2010) [Google Scholar]
  9. B. J. Koo and M. H. Kim, Hydrodynamic interactions and reLative motions of two fLoating pLatforms with mooring Lines in side-by-side off Loading operation, Applied Ocean Research, 27, pp 292-310, (2005) [CrossRef] [Google Scholar]
  10. K. H. Kim, Kim Y. and Kim M. S., NumericaL AnaLysis on Motion Responses of Adjacent MuLtipLe FLoating Bodies by Using Rankine PaneL Method, ISOPE, (19)2, pp 90-96, (2009) [Google Scholar]
  11. S. Yan., Q. W. Ma and X. Cheng, Fully NonLinear Hydrodynamic Interaction Between Two 3D FLoating Structures in CLose Proximity, ISOPE (21)3, pp 178-185, (2011) [Google Scholar]
  12. Lee D. H. and Choi H. S., A Dynamic AnaLysis of FPSO-ShuttLe Tanker System, ISOPE, I, pp 302-307, (2000) [Google Scholar]
  13. D. S. Qiao and J. P. Ou, Truncated ModeL Tests for Mooring Lines of a Semi-SubmersibLe Platform and Its EquivaLent Compensated Method, Journal of Marine Science and Technology. [Google Scholar]
  14. O. F. Waals and R. T. V. Radboud, Truncation Methods for Deep Water Mooring Systems for a catenary moored FPSO and a Semi Taut Moored Semi SubmersibLe, MARIN. [Google Scholar]
  15. T. Fan, D. Qiao and J. Ou, Dynamic Effects of EquivaLent Truncated Mooring Systems for aSemi-Submersib Le PLatform, Brodogradnja/Shipbilding, 65, 4, 2014. [Google Scholar]
  16. K. Nam, D. Chang, K. Chang, T. Rhee and I. B. Lee, MethodoLogy of Liftcycle Cost with Risk Expenditure for Offshore Process at Conceptual Design Stage, Energy, 36, pp 1554-1563, (2011) [CrossRef] [Google Scholar]
  17. I. Thalji, J. P. Liyanage and M. Hjollo, ScaLable and Customer Oriented Life CycLe Costing ModeL: A Case Study of an Innovative Vertical Axis Wind Turbine Concept (Case-VAWT), Proceedings of the Twenty-second ISOPE Conference, Rhodes, Greece, pp 423-425,(2012) [Google Scholar]
  18. L. C. Santos, G. P. Garcia and V. D. Casas, MethodoLogy to study the Life cycLe cost of floating offshore wind farms, Energy Procedia, pp 1-8, (2013) [Google Scholar]
  19. G. A. Grastos, H. N. Psaraftis and P. Zachariadis, Life CycLe Cost of Maintaining the Effectiveness of a Ship’s Structure and Environmental Impact of Ship Design Parameters, RINA Conference on the Design and Operation of Bulk Carriers, Athens, Greece, pp 1-16, (2009) [Google Scholar]
  20. S.F. Senra, B.P. Jacob, F.N. Corrêa, B.M. Jacovazzo, A.L. de Lima, T.A.G. de Lacerda, C.H. Fucatu, Assessment and calibration of numerical coupled models of a deep-draft semisubmersible platform based on model tests, in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, ISOPE 2010, Beijing, China, (2010) [Google Scholar]
  21. H. Ormberg, K. Larsen, Coupled analysis of floater motion and mooring dynamics for a turret-moored ship, Appl. Ocean Res. 20 (1998) 55-67. [Google Scholar]
  22. M.V. Rodrigues, F.N. Correa, B.P. Jacob, Implicit domain decomposition methods for coupled analysis of offshore platforms, Commun. Numer. Methods Eng. 23 (2007) 599-621, http://dx.doi.org/10.1002/cnm.945. [CrossRef] [Google Scholar]
  23. B.P. Jacob, R.A. Bahiense, F.N. Correa, B.M. Jacovazzo, Parallel implementations of coupled formulations for the analysis of floating production systems, part I: coupling formulations, Ocean Eng. 55 206-218, http://dx.doi.org/10.1016/j.oceaneng.2012.06.019. (2012) [CrossRef] [Google Scholar]
  24. B.P. Jacob, L.D. Franco, M.V. Rodrigues, F.N. Correa, B.M. Jacovazzo, Parallel implementations of coupled formulations for the analysis of floating production systems, part II: domain decomposition strategies, Ocean Eng. 55 219-234, http://dx.doi.org/10.1016/j.oceaneng.2012.06.018. (2012) [CrossRef] [Google Scholar]
  25. B.P. Jacob, N.F.F. Ebecken, Adaptive time integration of nonlinear structural dynamic problems, Eur. J. Mech. A Solids 12 277-298. (1993) [Google Scholar]
  26. B.P. Jacob, N.F.F. Ebecken, Towards an adaptive semi-implicit solution scheme for nonlinear structural dynamic problems, Comput. Struct. 52 495-504. (1994) [CrossRef] [Google Scholar]
  27. B.P. Jacob, N.F.F. Ebecken, An optimized implementation of the newmark/Newton-Raphson algorithm for the time integration of nonlinear problems, Commun. Numer. Methods Eng. 10 983-992. (1994) [CrossRef] [Google Scholar]
  28. F.N. Correa, B.P. Jacob, W.J. Mansur, Formulation of an efficient hybrid time-frequency domain solution procedure for linear structural dynamic problems, Comput. Struct. 88 (2010) 331-346, http://dx.doi.org/10.1016/j.compstruc..11.008 (2009) [CrossRef] [Google Scholar]
  29. F.N. Correa, B.M. Jacovazzo, M.H.A. de Lima Jr., B.P. Jacob, A reduced integration method for the coupled analysis of floating production systems, Ocean Eng. 104 422-436, http://dx.doi.org/10.1016/j.oceaneng.2015.05.033. (2015) [CrossRef] [Google Scholar]
  30. A.R.C. Giron, F.N. Correa, A.O.V. Hernandez, B.P. Jacob, An integrated methodology for the design of mooring systems and risers, Mar. Struct. 39 (2014) 395-423, http://dx.doi.org/10.1016/j.marstruc.2014.10.005. [CrossRef] [Google Scholar]
  31. S. Haykin, Neural Networks-A Comprehensive Foundation, Prentice Hall, New Jersey, (2001) [Google Scholar]
  32. B. Widrow, D.E. Rumelhart, M.A. Lehr, Neural networks: applications in industry, business and science, Commun. ACM 37 (3) 93-105. (1994) [CrossRef] [Google Scholar]
  33. Z. Waszczyszyn, L. Ziemianski, Neural networks in mechanics of structures and materials-New results and prospects of applications, Comput. Struct. 79 2261-2276. (2001) [CrossRef] [Google Scholar]
  34. H. Adeli, Neural networks in civil engineering: 1989-2000, Comput. Aided Civ. Infrastruct. Eng. 16 126-142. (2001) [Google Scholar]
  35. S.F. Yasseri, H. Bahai, H. Bazargan, A. Aminzadeh, Prediction of safe sea-state using finite element method and artificial neural networks, Ocean Eng. 37 200-207. (2010) [CrossRef] [Google Scholar]
  36. A.B. Mahfouz, Predicting the capability-polar-plots for dynamic positioning systems for offshore platforms using artificial neural networks, Ocean Eng. http://dx.doi.org/10.1016/j.oceaneng.2006.08.006. (2006) [Google Scholar]
  37. D. Ok, Y. Pu, A. Incecik, Artificial neural networks and their application to assessment of ultimate strength of plates with pitting corrosion, Ocean Eng. 34 2222-2230, http://dx.doi.org/10.1016/j.oceaneng.2007.06.007. (2007) [CrossRef] [Google Scholar]
  38. L.M. Quéau, M. Kimiaei, M.F. Randolph, Artificial neural network development for stress analysis of steel catenary risers: sensitivity study and approximation of static stress range, Appl. Ocean Res. 48 148-161. (2014) [CrossRef] [Google Scholar]
  39. Y. Kim, Prediction of the dynamic response of a slender marine structure under an irregular ocean wave using the NARX-based quadratic Volterra series, Appl. Ocean Res. 49 (2015) 42-56, http://dx.doi.org/10.1016/j.apor..11.002. (2014) [CrossRef] [Google Scholar]
  40. Y. Kim, Finite memory quadratic Volterra model for the response prediction of a slender marine structure under a Morison load, J. Fluids Struct. 56 75-88. (2015) [CrossRef] [Google Scholar]
  41. S. Mazaheri, E. Mesbahi, M.J. Downie, A. Incecik, Seakeeping analysis of a turret-moored FPSO by using artificial neural networks, Procs. of OMAE03-22nd International Conference on Offshore Mechanics and Arctic Engineering (2003) [Google Scholar]
  42. S. Mazaheri, M.J. Downie, Response-Based method for determining the extreme behaviour of floating offshore platforms, Ocean Eng. 32 363-393, http://dx.doi.org/10.1016/j.oceaneng.2004.08.004. (2005) [CrossRef] [Google Scholar]
  43. R. Guarize, N.A.F. Matos, L.V.S. Sagrilo, E.C.P. Lima, Neural networks in the dynamic response analysis of slender marine structures, Appl. Ocean Res. 29 191-198. (2007) [CrossRef] [Google Scholar]
  44. A.C. de Pina, A.A. de Pina, C.H. Albrecht, B.S.L.P. de Lima, B.P. BSLP, ANN-based surrogate models for the analysis of mooring lines and risers, Appl. Ocean Res. 41 76-86, http://dx.doi.org/10.1016/j.apor.2013.03.003. (2013) [CrossRef] [Google Scholar]
  45. A.C. de Pina, C.H. Albrecht, B.S.L.P. de Lima, B.P. Jacob, Wavelet Network meta-models for the analysis of slender offshore structures, Eng. Struct. 68 71-84, http://dx.doi.org/10.1016/j.engstruct.2014.02.039. (2014) [CrossRef] [Google Scholar]
  46. A.C. de Pina, B.F.M. Monteiro, C.H. Albrecht, B.S.L.P. de Lima, B.P. Jacob, ANN and wavelet network meta-models for the coupled analysis of floating production systems, Appl. Ocean Res. 48 21-32, http://dx.doi.org/10.1016/j.apor.2014.07.009. (2014) [CrossRef] [Google Scholar]
  47. Tae Wook Ha, Jae Jun Jeong, Ki Yong Choi, Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code, Nuclear Engineering and Technology 49 1100-1108. (2017) [CrossRef] [Google Scholar]
  48. Andrej Prošek, et.al, Use of FFTBM by signal mirroring for sensitivity study, Annals of Nuclear Energy, 76 253-262. (2015) [CrossRef] [Google Scholar]
  49. Arindam Ghosh, et al. Theory of mirrored time domain sampling for NMR spectroscopy, Journal of Magnetic Resonance, Journal of Magnetic Resonance 213 46-57. (2011) [CrossRef] [Google Scholar]
  50. Andrej Prošek, et al. Quantitative assessment with improved fast Fourier transform based method by signal mirroring, Nuclear Engineering and Design 238 2668-2677. (2008) [CrossRef] [Google Scholar]
  51. Andrej Prošek, et al. Quantitative assessment with improved fast Fourier transform based method by signal mirroring, Nuclear Engineering and Design 238 2668-2677. (2008) [CrossRef] [Google Scholar]
  52. Tae Wook Ha, et al. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code, Nuclear Engineering and Technology 49 1100e1108. (2017) [Google Scholar]
  53. Dimo Brockhoff, et al. Mirrored Sampling and Sequential Selection for Evolution Strategies, PPSN 11-21. (2010) [Google Scholar]
  54. Mahdi Saghafi, et al. Application of FFTBM with signal mirroring to improve accuracy assessment of MELCOR code. Nuclear Engineering and Design 308 238-251. (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.