Open Access
MATEC Web Conf.
Volume 203, 2018
International Conference on Civil, Offshore & Environmental Engineering 2018 (ICCOEE 2018)
Article Number 01005
Number of page(s) 17
Section Coastal and Offshore Engineering
Published online 17 September 2018
  1. Hamdani, B. Trihatmodjo and Suharyanyo. Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor. IRJES 4, 16 35-44 (2015) [Google Scholar]
  2. K d’Angremond and F. V. Roode, Breakwaters and Closure Dams. (London, Spon Press, 2004) [CrossRef] [Google Scholar]
  3. Department of Irrigation and Drainage Malaysia, Breakwaters, ‘The Official Portal for Department of Irrigation and Drainage Malaysia’, ( (2010) [Google Scholar]
  4. R. Ranasinghe and I. L. Turner, Shoreline Response to Submerged Structures: A Review. C. Eng. 53, 65-79 (2006) [Google Scholar]
  5. Hung, Chin-Wen & Chen, Hong-Bin & Tsai, Ching-Piao. Simulation of Shoreline Change behind a Submerged Permeable Breakwater. Proceedings (7th ICECT 2010), 49-58 (2010) [Google Scholar]
  6. C. Phillips, The Physical Causes of Coastal Erosion (2015) [Google Scholar]
  7. M. Setz and M. Finnegan, Analysis of the Wave Energy Reduction of Rubble Mound Breakwaters (2010) [Google Scholar]
  8. J. Chen, C. Jiang, W. Yang, G. Xiao, Laboratory Study on Protection of Tsunami-Induced Scour by Offshore Breakwaters. Ntrl. Hzrds. 81, 2, 1229-1247 (2015) [Google Scholar]
  9. G. Dhinakaran, V. Sundar, R. Sundaravadivelu, Review of the Research on Emerged and Submerged Semicircular Breakwaters. J. Eng. Martm. Env. 226, 4, 397-409 (2012) [Google Scholar]
  10. U. Tomasicchio and Member ASCE. Submerged Breakwaters for The Defence of The Shoreline at Ostia Field Experiences, Comparison. In Edge B. L. (Ed), Coast. Eng. 1996, 2404-2417 (1996) [Google Scholar]
  11. L.C. Van Rijn, Design of Hard Coastal Structures Against Erosion (2013) [Google Scholar]
  12. D. S. Hur, K. H. Lee, D. S. Choi, Effect of the Slope Gradient of Submerged Breakwaters on Wave Energy Dissipation. Eng. Appl. of Comp. Fld. Mech. 5, 1, 88-98 (2011) [Google Scholar]
  13. A. D. Quinn, Design and Construction of Ports And Marine Structures. (New York, McGraw-Hill, 1972) [Google Scholar]
  14. G. E. Jarlan, A Perforated Vertical Wall Break-water. Dock Harbour Auth. XII, 394-398 (1961) [Google Scholar]
  15. S. Tamrin, Pallu, H. Parung, A. Thaha, Experimental Study of Perforated Concrete Block Breakwater. International. Journal of Engineering. & Tech. 14, 3, 6-10 (2014) [Google Scholar]
  16. H. Bergmann, H. Oumeraci, Wave Pressure Distribution on Permeable Vertical Walls. In Edge B. L. (Ed), Coast. Eng. 1998 2042-2055 (1998) [Google Scholar]
  17. M. L. Campbell, E. I. Paling, Evaluating Vegetative Transplant Success in Posidonia Australis: A Field Trial with Habitat Enhancement. Mrn. Plln.. Blln 46, 7, 828-834 (2003) [Google Scholar]
  18. SSSC. Scour Control (n.d.) [Google Scholar]
  19. K. W. Pilarczyk, R. B. Zeidler, Offshore Breakwaters and Shore Evolution Control (1996) [Google Scholar]
  20. W. T. Bakker, J. Bax, D. Grootenboer, W. H. Tutuarima, Artificial Seaweed: Coastal and Submarine-Pipeline as. La Houille Blanche 8. Page 661-676 (1973) [CrossRef] [EDP Sciences] [Google Scholar]
  21. I. Hadibah, Valued-Added Shore Protection Structures for Enhancement of the Marine Ecosystem Services. In Proceeding of the 2003 Technical Seminar on Shoreline Management, Malaysia (2003) [Google Scholar]
  22. R. H. Charlier, C. P. De Meyer, Coastal Erosion: Response and Management. (New York, Springer, 1998) [CrossRef] [Google Scholar]
  23. A. S. Kiran, V. Ravichandran, K. M. Sivakholundu, Stability Analysis and Design of Offshore Submerged Breakwater Constructed using Sand Filled Geosynthetic Tubes. Procedia Eng. 116, 310-319 (2015) [CrossRef] [Google Scholar]
  24. I. E. Alvarez, R. Rubio, H. Ricalde, Beach Restoration With Geotextile Tubes as Submerged Breakwaters in Yucatan, Mexico. Geotextile and Geomembrane 25, 4-5, 233-241 (2007) [CrossRef] [Google Scholar]
  25. Y. I. Oh, E. C. Shin, using Submerged Geotextile Tubes in The Protection of the e. Korean Shore. Coast. Eng. 53, 879-895 (2006) [Google Scholar]
  26. T. R. Barber, G. L Barber, (U.S. Patent No. 5,564,369), U.S. Patent and Trademark Office,Washington, DC U.S. (1996) [Google Scholar]
  27. Reef Beach. Reef Balls as Submerged Breakwaters or for Erosion Control, ( (n.d.)) [Google Scholar]
  28. The Reef Ball Foundation. Reef Ball Styles, ( (n.d)) [Google Scholar]
  29. I. Del Vita, Hydraulic Response of Submerged Breakwaters in Reef Ball Modules (2016) [Google Scholar]
  30. L.E. Harris, Status Report for the Submerged Reef Ball Artificial Reef Submerged Breakwater Beach Stabilization Project for the Grand Cayman Marriott Hotel. (2003) [Google Scholar]
  31. L. E. Harris, Artificial Reefs for Ecosystem Restoration and Coastal Erosion Protection with Aquaculture and Recreational Amenities. Reef Journal 1, 1, 235-246 (2009) [Google Scholar]
  32. L.E. Harris, Designed Reefs Coastal Stabilization and Reef Restoration, ( (2007) [Google Scholar]
  33. D. S. Arnouil, Shoreline Response for a Reef Ball™ Submerged Breakwater System offshore of Grand Cayman Island. Degree of Master of Science in Ocean Engineering, Melbourne, Florida (2008) [Google Scholar]
  34. L. E. Harris, Investigations and Recommendations for Solutions to the Beach Erosion Problems in the City of Herzliya, Israel (2007) [Google Scholar]
  35. H. D. Armono, K. R. Hall, Wave Transmission on Submerged Breakwaters Made of Hollow Hemispherical Shape Artificial Reefs. In Canadian Coastal Conference. 313-322. (2003) [Google Scholar]
  36. E. Fatimah, A. K. A. Wahab, H. Ismail, Numerical Modeling Approach of an Artificial Mangrove Root System (ArMS) Submerged Breakwater as Wetland Habitat Protector. In Proceeding of the Seventh International Conference On Coastal snd Port Engineering, (PIANC-COPEDEC VII), 88,1-20 United Arab Emirates (2008). [Google Scholar]
  37. I. Hadibah, F. Eldina, A. K. Abd. Wahab, Wave Energy Dissipation over Pseudo-Mangrove Roots, Innovations & Technologies in Oceanography for Sustainable Development. Proceedings of the Innovations and Technologies in Ocn. for Stn. Dev. (ITOS 2005) 193-204, 26-29 September, Kuala Lumpur, Malaysia (2005) [Google Scholar]
  38. E. C. Lee, R. S. Douglas, Geotextile Tubes as Submerged Dykes for Shoreline Management in Malaysia. Geotextiles and Geomembranes xxx, 1-8 (2011) [Google Scholar]
  39. M. D. Safari, A. K. Othman, M. Azuhan, Submerged Breakwater Hydrodynamic Modeling for Wave Dissipation and Coral Restorer Structure (ICBBE ’16) 98-101 (2016) [Google Scholar]
  40. J Dattatri, H. Raman, N. J. Shankar, Performance Characteristics of Submerged Breakwaters. In Coastal Engineering 1978. 2153-2171 (1978) [CrossRef] [Google Scholar]
  41. S. R. Seabrook, K. R. Hall, Wave Transmission at Submerged Rubblemound Breakwaters. In Coastal Engineering 1998. 2000-2013 (1999) [Google Scholar]
  42. C. Vidal, M. A. Losada, R. Medina, E. P. D. Mansard, & G. Gomez-Pina, A Universal Analysis for The Stability of Both Low-Crested and Submerged Breakwaters. In Coastal Engineering 1992. 1679-1692. (1993) [Google Scholar]
  43. T. M. Dick, A. Brebner, Solid and Permeable Submerged Breakwaters. In Coastal Engineering 1968. 1141-1158. (1969) [Google Scholar]
  44. M. Mohd Fauzi, S. Y. Ang, H. Saiful Bahri, S. Mohd Kamarul Huda, Colonization of Marine Epibiota around WABCORE Artificial Reef at Panuba Bay, Tioman Island, Malaysia. APCBEE Procedia 5, 416-422 (2013). [CrossRef] [Google Scholar]
  45. M. Muttray, E. ten Oever, B. Reedijk, Stability of Low Crested and Submerged Break waters with Single Layer Armouring. J. of Ship. and Ocn. Eng. 2, 140-152 (2012) [Google Scholar]
  46. Y. Cao, C. Jiang, Y. Bai, Wave Attenuation Properties of Double Trapezoidal Submerged Breakwaters on Flat-Bed. Transactions of Tianjin University 18, 6, 40-410. (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.