Open Access
MATEC Web Conf.
Volume 201, 2018
2017 The 3rd International Conference on Inventions (ICI 2017)
Article Number 01010
Number of page(s) 10
Section Invention of mechanical system
Published online 14 September 2018
  1. Y. Shimizu, Y. Matsuno, Y. Ohba and W. Gao, “Micro thermal sensor for nanometric surface defect inspection,” 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, 2016, pp. 978-979. DOI: 10.1109/NANO.2016.7751308 [CrossRef] [Google Scholar]
  2. R. Ren; T. Hung; K. C. Tan, “A Generic Deep-Learning-Based Approach for Automated Surface Inspection,” in IEEE Transactions on Cybernetics, vol.PP, no.99, pp.1-12. DOI: 10.1109/TCYB.2017.2668395 [Google Scholar]
  3. Y. C. Samarawickrama and C. D. Wickramasinghe, “Matlab based automated surface defect detection system for ceremic tiles using image processing,” 2017 6th National Conference on Technology and Management (NCTM), Malabe, 2017, pp. 34-39. DOI: 10.1109/NCTM.2017.7872824 [CrossRef] [Google Scholar]
  4. S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska and B. De Schutter, “Deep convolutional neural networks for detection of rail surface defects,” 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, 2016, pp. 2584-2589. DOI: 10.1109/IJCNN.2016.7727522 [CrossRef] [Google Scholar]
  5. Z. N. Ke, Q. J. Zhao, C. H. Huang, P. Ai and J. G. Yi, “Detection of wood surface defects based on particle swarm-genetic hybrid algorithm,” 2016 International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, 2016, pp. 375-379. DOI: 10.1109/ICALIP.2016.7846635 [Google Scholar]
  6. A. Laucka, D. Andriukaitis, V. Markevicius and M. Zilys, “Research of the Defects in PET preform,” 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, 2016, pp. 1273-1279. DOI: 10.1109/MMAR.2016.7575322 [CrossRef] [Google Scholar]
  7. A. Laucka, D. Andriukaitis, A. Valinevicius and D. Navikas, “Computer vision system for defects detection in PET preform,” 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, 2016, pp. 1280-1285. DOI: 10.1109/MMAR.2016.7575323 [CrossRef] [Google Scholar]
  8. M. Win, A. R. Bushroa, M. A. Hassan, N. M. Hilman and A. Ide-Ektessabi, “A Contrast Adjustment Thresholding Method for Surface Defect Detection Based on Mesoscopy,” in IEEE Transactions on Industrial Informatics, vol. 11, no. 3, pp. 642-649, June 2015. DOI: 10.1109/TII.2015.2417676 [CrossRef] [Google Scholar]
  9. M. W. Ashour, F. Khalid, A. A. Halin and L. N. Abdullah, “Machining process classification using PCA reduced histogram features and the Support Vector Machine,” 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, 2015, pp. 414-418. DOI: 10.1109/ICSIPA.2015.7412226 [CrossRef] [Google Scholar]
  10. C. Huang, D. Chen and X. Tang, “Implementation of Workpiece Recognition and Location Based on Opencv,” 2015 8th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, 2015, pp. 228-232. DOI: 10.1109/ISCID.2015.143 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.