Open Access
Issue |
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
|
|
---|---|---|
Article Number | 11001 | |
Number of page(s) | 5 | |
Section | Concrete Materials Technology | |
DOI | https://doi.org/10.1051/matecconf/201819911001 | |
Published online | 31 October 2018 |
- Y. Umaki, R. Tomita, F. Hondo, and S. Okada, “Cement composition,” US Patent 5181961, 1991. [Google Scholar]
- G. Gelardi, S. Mantellato, D. Marchon, M. Palacios, A.B. Eberhardt, and R.J. Flatt, “Chemistry of chemical admixtures,” in Science and Technology of Concrete Admixtures, Elsevier, 2016, pp. 149–218. [CrossRef] [Google Scholar]
- J. Schulze and H. Baumgartl, “Shrinkage-reducing agent for cement,” EP 0308950 A1, 1988. [Google Scholar]
- J. Schulze and H. Baumgartl, “Shrinkage-reducing agent for cement,” EP0308950 B1, 1988. [Google Scholar]
- N. S. Berke and M.P. Dallaire, “Drying shrinkage cement admixture,” US5622558 A, 1995. [Google Scholar]
- F. Wombacher, T.A. Bürge, and U. Mäder, “Method of reducing the shrinkage of hydraulic binders,” EP1024120 B1, 2012. [Google Scholar]
- T. Goto, T. Sato, K. Sakai, and M. Ii, “Cementshrinkage-reducing agent and cement composition,” US4547223 A, 1985. [Google Scholar]
- S. Akimoto, S. Honda, and T. Yasukohchi, “Additives for cement,” US4946904 A, 1990. [Google Scholar]
- ACI Committee 223, 223R-10 Guide for the Use of Shrinkage-Compensating Concrete. American Concrete Institute, 2010. [Google Scholar]
- ACI Committee 212, “212.3R-16 Report on Chemical Admixtures for Concrete,” 2017. [Google Scholar]
- N.P. Mailvaganam, “15 – Miscellaneous Admixtures,” in Concrete Admixtures Handbook, 1996, pp. 939–1024. [CrossRef] [Google Scholar]
- O. M. Jensen and P.F. Hansen, “Water-entrained cement-based materials II. Experimental observations,” Cem. Concr. Res., vol. 32, no. 6, pp. 973–978, Jun. 2002. [CrossRef] [Google Scholar]
- O. M. Jensen and P.F. Hansen, “Water-entrained cement-based materials,” Cem. Concr. Res., vol. 31, no. 4, pp. 647–654, Apr. 2001. [Google Scholar]
- M. Collepardi, R. Troli, M. Bressan, F. Liberatore, and G. Sforza, “Crack-free concrete for outside industrial floors in the absence of wet curing and contraction joints,” Cem. Concr. Compos., vol. 30, no. 10, pp. 887–891, Nov. 2008. [CrossRef] [Google Scholar]
- P.-C. Aïtcin, Binders for durable and sustainable concrete. Taylor & Francis, 2008. [Google Scholar]
- J. (John) Bensted and P. Barnes, Structure and performance of cements. Spon Press, 2002. [Google Scholar]
- D.P. Bentz, G. Sant, and J. Weiss, “Early-Age Properties of Cement-Based Materials. I: Influence of Cement Fineness,” J. Mater. Civ. Eng., vol. 20, no. 7, pp. 502–508, Jul. 2008. [CrossRef] [Google Scholar]
- A. Neville, “Why We Have Concrete Durability Problems,” Spec. Publ., vol. 100, pp. 21–30, Apr. 1987. [Google Scholar]
- G. Frigione and S. Marra, “Relationship between particle size distribution and compressive strength in portland cement, ” Cem. Concr. Res., vol. 6, no. 1, pp. 113–127, Jan. 1976. [CrossRef] [Google Scholar]
- F. Škvára, K. Kolář, J. Novotný, and Z. Zadák, “The effect of cement particle size distribution upon properties of pastes and mortars with low water-to-cement ratio,” Cem. Concr. Res., vol. 11, no. 2, pp. 247–255, Mar. 1981. [CrossRef] [Google Scholar]
- W. Aiqin, Z. Chengzhi, and Z. Ningsheng, “The theoretic analysis of the influence of the particle size distribution of cement system on the property of cement,” Cem. Concr. Res., vol. 29, no. 11, pp. 1721–1726, Nov. 1999. [CrossRef] [Google Scholar]
- A. Wang, C. Zhang, and N. Zhang, “Study of the influence of the particle size distribution on the properties of cement,” Cem. Concr. Res., vol. 27, no. 5, pp. 685–695, May 1997. [CrossRef] [Google Scholar]
- D. P. Bentz and C. J. Haecker, “An argument for using coarse cements in high-performance concretes,” Cem. Concr. Res., vol. 29, no. 4, pp. 615–618, Apr. 1999. [CrossRef] [Google Scholar]
- D.P. Bentz, E.J. Garboczi, C.J. Haecker, and O.M. Jensen, “Effects of cement particle size distribution on performance properties of Portland cement-based materials,” Cem. Concr. Res., vol. 29, no. 10, pp. 1663–1671, Oct. 1999. [CrossRef] [Google Scholar]
- G. Quercia, “Application of nanosilica in concrete,” Eindhoven University of Technology, 2014. [Google Scholar]
- M. Hunger, “An integral design concept for ecological self-compacting concrete,” Eindhoven University of Technology, 2010. [Google Scholar]
- S. International Organization for Standardization, CH-1211 Geneve 20, “ISO 13320-1. Particle size analysis-Laser diffraction methods Part 1: General principles,” 2009. [Google Scholar]
- Y. Rui, “Development of sustainable protective Ultra-High Performance Fibre Reinforced Concrete (UHPFRC),” Eindhoven University of Technology, 2015. [Google Scholar]
- “EN 1015-3 Methods of test for mortar for masonry Part 3: Determination of consistence of fresh mortar (by flow table),” CEN Eur. Comm. Stand., 2007. [Google Scholar]
- EN 196-1, “Methods of testing cement Part 1: Determination of strength.,” CEN Eur. Comm. Stand., 2005. [Google Scholar]
- “ASTM C1698 09(2014) Standard Test Method for Autogenous Strain of Cement Paste and Mortar,” ASTM. [Google Scholar]
- The Concrete Society, TR22 Non-structural cracks in concrete. 2010. [Google Scholar]
- A.M. Neville, “Role of Cement in the Creep of Mortar,” ACI J. Proc., vol. 55, no. 3, pp. 963–984, Mar. 1959. [Google Scholar]
- R.W. Burrows, M-11: The Visible & Invisible Cracking of Concrete. American Concrete Institute, 1998. [Google Scholar]
- P. Mehta and R.W. Burrows, Building Durable Structures in the 21st Century, vol. 23, no. 3. The Institute, 2001. [Google Scholar]
- P.-C. Aïtcin and S. Mindess, “Back to the Future,” Concr. Int., vol. 37, no. 5, pp. 37–40, May 2015. [Google Scholar]
- I.B. Celik, “The effects of particle size distribution and surface area upon cement strength development,” Powder Technol., vol. 188, no. 3, pp. 272–276, Jan. 2009. [CrossRef] [Google Scholar]
- D.P. Bentz, C.J. Bognacki, K.A. Riding, and V.H. Villarreal, “Hotter Cements, Cooler Concretes,” Concr. Int., vol. 33, no. 1, pp. 41–48, Jan. 2011. [Google Scholar]
- T. Zhang, Q. Yu, J. Wei, and P. Zhang, “A new gap-graded particle size distribution and resulting consequences on properties of blended cement,” Cem. Concr. Compos., vol. 33, no. 5, pp. 543–550, May 2011. [CrossRef] [Google Scholar]
- T. Zhang, Q. Yu, J. Wei, P. Zhang, and P. Chen, “A gap-graded particle size distribution for blended cements: Analytical approach and experimental validation,” Powder Technol., vol. 214, no. 2, pp. 259–268, Dec. 2011. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.