Open Access
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
Article Number 04003
Number of page(s) 4
Section Material Science
Published online 12 September 2018
  1. E. A. Cho, U. Jeon, H. Y. Ha, S. Hong, and I. Oh, “Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells,” vol. 125, pp. 178-182, (2004). [Google Scholar]
  2. D. Chu and R. Jiang, “Performance of polymer electrolyte membrane fuel cell PEMFC/stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack,” pp. 128-133, (1999). [Google Scholar]
  3. P. L. Hentall, J. B. Lakeman, G. O. Mepsted, J. M. Moore, and P. L. Adcock, “New materials for polymer electrolyte membrane fuel cell current collectors,” pp. 235-241, (1999). [Google Scholar]
  4. E. Hontanon, M. J. Escudero, C. Bautista, and L. Daza, “using computational fluid dynamics techniques,” (2000). [Google Scholar]
  5. S. Huang, P. Ganesan, S. Park, and B. N. Popov, “Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications,” pp. 13898-13899, (2009). [Google Scholar]
  6. A. Kumar and R. G. Reddy, “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,” vol. 113, pp. 11-18, (2003). [Google Scholar]
  7. C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, “Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application,” pp. 7617-7626, (2005). [Google Scholar]
  8. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, “Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above,” pp. 4896-4915, (2003). [Google Scholar]
  9. M. A. Rodrigo, J. J. Linares, and G. Manjavacas, “Synthesis and characterisation of electrolyte membrane for high temperature PEMFCs,” vol. 280, pp. 351-362, (2006). [Google Scholar]
  10. V. Neburchilov, J. Martin, H. Wang, and J. Zhang, “A review of polymer electrolyte membranes for direct methanol fuel cells,” vol. 169, pp. 221-238, (2007). [Google Scholar]
  11. J. Dodelet, “density in polymer electrolyte membrane fuel cells,” (2011). [Google Scholar]
  12. N. Rajalakshmi, H. Ryu, M. M. Shaijumon, and S. Ramaprabhu, “Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material,” vol. 140, pp. 250-257, (2005). [Google Scholar]
  13. K. D. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” vol. 185, pp. 29-39, (2001). [Google Scholar]
  14. H. Wang and J. A. Turner, “Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells,” vol. 128, pp. 193-200, (2004). [Google Scholar]
  15. F. Yuan and H. Ryu, “The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell,” vol. 596. [Google Scholar]
  16. B. Smitha, S. Sridhar, and A. A. Khan, “Solid polymer electrolyte membranes for fuel cell applications-a review,” vol. 259, pp. 10-26, (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.