Open Access
MATEC Web Conf.
Volume 196, 2018
XXVII R-S-P Seminar, Theoretical Foundation of Civil Engineering (27RSP) (TFoCE 2018)
Article Number 04093
Number of page(s) 9
Section Building Materials, Technologies, Organization and Management in Construction
Published online 03 September 2018
  1. T.J. Cui, D.R. Smith, R. Liu, Metamaterials. Theory, Design and Applications, Springer, New York, Dordrecht, Heidelberg, London, (2010) [Google Scholar]
  2. N. Engheta, R.W. Ziolkowski, Metamaterials. Physics and Engineering Explorations. Wiley-Interscience, New York, (2006) [Google Scholar]
  3. G. Singh, Ranji, A.A. Marwaha, Review of Metamaterials and its Applications, International Journal of Engineering Trends and Technology, 19 (6), pp. 305-310, (2015) [CrossRef] [Google Scholar]
  4. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, pp. 977-980, (2006) [CrossRef] [PubMed] [Google Scholar]
  5. C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science, 315, pp. 47-49, (2007) [CrossRef] [PubMed] [Google Scholar]
  6. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. National Photonics, 5, pp.523-530, (2011) [CrossRef] [Google Scholar]
  7. A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J.M. Pearce, D.O. Guney, Exchenging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Science Report, 4, 4901, (2014) [CrossRef] [Google Scholar]
  8. C. Wu, B. Neuner III, J. John, A. Milder, B. Zollars, S. Savoy, G. Shvets, Metamaterial-based integrated plasmonic absorber/emitter for solar thermos-photovoltaic systems. Journal of Optics, 14, 024005, (2012) [CrossRef] [Google Scholar]
  9. S. Brule, E.H. Javelaud, S. Enoch, S. Guenneau, Experiments on seismic metamaterials: molding surface waves. Physical Review Letters, 112, 133901-1-5, (2014) [Google Scholar]
  10. H. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Pgysics Letters, 91, 183518, (2007) [CrossRef] [Google Scholar]
  11. J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, P. Sheng, Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3, 756, (2012) [Google Scholar]
  12. J.B. Lee, S. Peng, D. Yang, Y.H. Roh, H. Funabashi, N. Park, E.J. Rice, L. Chen, R. Long, M. Wu, D. Luo, A mechanical metamaterial made from a DNA hydrogel. Nature Nanotechnology, 7, pp. 816-820, (2012) [CrossRef] [Google Scholar]
  13. K. Bertoldi, P.M. Reis, S. Willshaw, T. Mullin, Negative Poisson’s ratio behavior by an elastic instability. Advanced Materials, 22, pp. 361-366, (2010) [CrossRef] [Google Scholar]
  14. M. Kadic, T. Buckmann, N. Stenger, M. Thiel, On the practicability of pentamode mechanical metamaterials. Applied Physics Letters, 100, 191901 (2012) [CrossRef] [Google Scholar]
  15. J.H. Lee, J.P. Singer, E.L. Thomas, Micro-/Nanostructured mechanical metamaterials. Advanced Materials, 24, pp. 4782-4810, (2012) [CrossRef] [Google Scholar]
  16. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. Deotte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, C.M. Spadaccini, Ultra-light, ultra-stiff mechanical metamaterials. Science, 344, pp. 1373-1377, (2014) [CrossRef] [Google Scholar]
  17. W. Gilewski, A. Al Sabouni-Zawadzka, On possible applications of smart structures controlled by self-stress. Archives of Civil and Mechanical Engineering, 15, pp. 469-478, (2015) [Google Scholar]
  18. R.E. Skelton, M.V. de Oliveira, Tensegrity Systems, Springer, Dordrecht, Heidelberg, London, New York, (2009) [Google Scholar]
  19. R. Motro, Tensegrity: Structural Systems for the Future, Kogan Page Science, London, (2003) [Google Scholar]
  20. A. Al Sabouni-Zawadzka, W. Gilewski, Smart metamaterial based on the simplex tensegrity pattern. Materials, 11, 637, pp. 1-14, (2018) [CrossRef] [Google Scholar]
  21. O.C. Zienkiewicz, R.L. Taylor, The finite element method. Vol. 1. The basis. Butterworth-Heinemann, New Jersey, (2000) [Google Scholar]
  22. SOFISTIK Documentation, (2017) [Google Scholar]
  23. T. Lewiński, On algebraic equations of elastic trusses, frames and grillages. Journ. Theoret. Appl. Mech., 39, pp. 307-322, (2001) [Google Scholar]
  24. J. Pełczyński, W. Gilewski, An extension of algebraic equations of elastic trusses with self-equilibrium system of forces. 6th European Conference on Computational Methods, 11-15 June 2018, Glasgow, UK [Google Scholar]
  25. W. Gilewski, J, Kłosowska, P. Obara, Application of singular value decomposition to the qualitative analysis of trusses and tensegrity structures [in Polish], Acta Sci. Pol. Architectura, 14, pp.3-20, (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.