Open Access
Issue
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
Article Number 02020
Number of page(s) 5
Section Track 2: Mechanical, Mechatronics and Civil Engineering
DOI https://doi.org/10.1051/matecconf/201819202020
Published online 14 August 2018
  1. Winter CJ. Into the hydrogen energy economy-milestones. International Journal of Hydrogen Energy 2005;30:681–5. [CrossRef] [Google Scholar]
  2. Armor JN. The multiple roles for catalysis in the production of H2. Appl Catal A: Gen 1999;176:159–76. [CrossRef] [Google Scholar]
  3. United States Department of Energy. An integrated research, development and demonstration plan. Hydrogen Pasteur Plan, 2004. [Google Scholar]
  4. Kim HY. A low cost production of hydrogen from carbonaceous wastes. International Journal of Hydrogen Energy 2003;28:1179–86. [CrossRef] [Google Scholar]
  5. Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy 2004;29:173–85. [CrossRef] [Google Scholar]
  6. De Vrije T, De Haas GG, Tan GB, Keijsers ERP, Claassen PAM. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy 2002;27:1381–90. [CrossRef] [Google Scholar]
  7. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, et al. Microalgae: a green source of renewable H2. Tibtech 2000;18:506–11. [CrossRef] [PubMed] [Google Scholar]
  8. Melis A. Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy 2002;27:1217–28. [CrossRef] [Google Scholar]
  9. Florin L, Tsokoglou A, Happe T. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 2001;276:6125–32. [CrossRef] [Google Scholar]
  10. Ueno Y, Kurano N, Miyachi S. Purification and characterization of hydrogenase from the marine green alga, Chlorococcum littorale. FEBS Lett 1999;443:144–8. [CrossRef] [Google Scholar]
  11. Schnackenberg J, Ikemoto H, Miyachi S. Photosynthesis and hydrogen evolution under stress conditions in a CO2-tolerant marine green alga, Chlorococcum littorale. J Photochem Photobiol B: Biol 1996;34:59–62. [CrossRef] [Google Scholar]
  12. Guan Y, Deng M, Yu X, Zang W. Two stage photo-production of hydrogen by marine green algae Platymonas subcordiformis. Biochem Eng J 2004;19:69–73. [CrossRef] [Google Scholar]
  13. Winkler M, Heil B, Heil B, Happe T. Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta (BBA): Gene Struct Express 2002;1576:330–4. [CrossRef] [Google Scholar]
  14. Winkler M, Hemschemeier A, Gotor C, Melis A, Happer T. [Fe]- hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy 2002;27:1431–9. [CrossRef] [Google Scholar]
  15. Pinto FAL, Troshina O, Lindbald P. A brief look at three decades of research on cyanobacterial hydrogen evolution. International Journal of Hydrogen Energy 2002;27:1209–15. [CrossRef] [Google Scholar]
  16. Yoon JH, Sim SJ, Kim M, Park TH. High cell density culture of Anabaena variabilis using repeated injection of carbon dioxide for the production of hydrogen. International Journal of Hydrogen Energy 2002;27:1265–70. [CrossRef] [Google Scholar]
  17. Koku H, Ero˘glu ˙I, G¨und¨uz U, Y¨ucel M, T¨urker L. Aspects of metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 2002;27:1315–29. [CrossRef] [Google Scholar]
  18. Federov AS, Tsygankov AA, Rao KK, Hall DO. Hydrogen photoproduction by Rhodobacter sphaeroides immobilized on polyurethane foam. Biotechnol Lett 1998;20:1007–9. [CrossRef] [Google Scholar]
  19. Ero˘glu ˙I, Aslan K, G¨und¨uz U, Y¨ucel M, T¨urker L. Substrate consumption rate for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol 1999;70:103–13. [CrossRef] [Google Scholar]
  20. Koku H, Ero˘glu ˙I, G¨und¨uz U, Y¨ucel M, T¨urker L. Kinetics of biohydrogen production by the photosynthetic bacterium Rhodobacter spheroids O.U. 001. International Journal of Hydrogen Energy 2003;28:381–8. [CrossRef] [Google Scholar]
  21. Ero˘glu E, G¨und¨uz U, Y¨ucel M, T¨urker L, Ero˘glu ˙I. Photobiological hydrogen production from olive mill wastewater as sole substrate sources. International Journal of Hydrogen Energy 2004;29:163–71. [CrossRef] [Google Scholar]
  22. Yetis M, G¨und¨uz U, Ero˘glu ˙I, Y¨ucel M, T¨urker L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy 2000;25:1035–41. [CrossRef] [Google Scholar]
  23. Kondo T, Arakawa M, Hiral T, Wakayama T, Hara M, Miyake J. Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. J Biosci Bioeng 2002;93:145–50. [CrossRef] [Google Scholar]
  24. Kim MS, Baek JS, Lee JK. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. International Journal of Hydrogen Energy 2006;31:121–7. [CrossRef] [Google Scholar]
  25. Zhu H, Ueda S, Asada Y, Miyake J. Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. International Journal of Hydrogen Energy 2002;27:1349–57. [CrossRef] [Google Scholar]
  26. Zhu H, Suzuki T, Tsygankov AA, Asada Y. Miyake J. hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized agar gels. International Journal of Hydrogen Energy 1999;24:305–10. [CrossRef] [Google Scholar]
  27. Fascetti E, Todini O. Rhodobacter sphaeroids RV cultivation and hydrogen production in a one and two stage chemostat. Appl Microbial Biotechnol 1995;44:300–5. [CrossRef] [Google Scholar]
  28. He D, Bultel Y, Magnin JP, Roux C, Willison JC. Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to PEM fuel cell. J Power Sources 2005;141:19–23. [CrossRef] [Google Scholar]
  29. Fang HHP, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater. International Journal of Hydrogen Energy 2005;30:785–93. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.