Open Access
Issue |
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
|
|
---|---|---|
Article Number | 10022 | |
Number of page(s) | 7 | |
Section | Bio & Human Engineering | |
DOI | https://doi.org/10.1051/matecconf/201818910022 | |
Published online | 10 August 2018 |
- Albert R, Barabasi A L. Statistical mechanics of complex networks [J]. Rev. Mod. Phys.(2002) [Google Scholar]
- Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics[J].Phys. Rep.(2006) [Google Scholar]
- Newman M E J. The structure and function of complex networks [J]. SIAM Rev, 45,167-256(2003) [Google Scholar]
- Dorogovtsev S N, Mendes J F F_ Evolution of Networks: From Biological Nets to the Internet and the WWW[M]. Oxford: Oxford University Press (2003) [CrossRef] [Google Scholar]
- de Vries, L.,Gensler, S., Leeflang, P.S.H.: Popularity of brand posts on Brand Fan pages: an investigation of the effects of social media marketing. J. Interact. Mark. 26, 83–91 (2012) [CrossRef] [Google Scholar]
- Watts D J, Strogatz S H. Collective dynamics in ‘small-world, networks[J]. Nature, 393, 440-442(1998) [CrossRef] [PubMed] [Google Scholar]
- Asur, S., Huberman, B.A.: Predicting the future with social media. In: The 2010 IEEE/WIC/ACM International Conference on Web Intelligence and IntelligentAgent Theory, Toronto, Canada. doi:10.1109/WIIAT.2010.63 (2010) [Google Scholar]
- Bollen, J., Mao, H. & Zeng, X. Twitter mood predicts the stock market. J. Comp.Sci. 2, 1–8 (2011) [CrossRef] [Google Scholar]
- Newman M E J. Coauthorship networks and patterns of scientific collahoration|Jj. Proc.Natl. Acad. Sci. U.S.A., 101,5200-5205(2004) [CrossRef] [Google Scholar]
- Krause A E, Frank K A, Mason D M, el al. Compartments revealed in food-web struc-lurefJl. Nature, 426,282-285 (2003) [CrossRef] [PubMed] [Google Scholar]
- Brody, D., Meister, B., Parry, M.: Informational inefficiency in financial markets. Math. Fin. Econ 6, 249–259 (2012) [CrossRef] [Google Scholar]
- Jiang Z Q, Zhou W X. Statistical significance of the rich-club phenomenon in complex nelworksfJ]. New J. Phys. 10,043002(2008) [CrossRef] [Google Scholar]
- Colizza V, Flammini A, Serrano M A, et al. Detecting rich-club ordering in complex networks!J]. Nat. Phys. 2,110-115 (2006) [CrossRef] [Google Scholar]
- Zhou S, Mondragon R J. The rich-club phenomenon in the internet lopologylJ]. IEEE Comm. Leu. 8,180-182 (2004) [CrossRef] [Google Scholar]
- Mantegna R N. Hierarchical structure in financial markets[J]. The European Physical Journal B, 11,193-197 (1999) [CrossRef] [EDP Sciences] [Google Scholar]
- Onnela J P, Kaski K, Kertész J. Clustering and information in correlation based financial networks[J]. The European Physical Journal B, 38,353-362 (2004) [CrossRef] [EDP Sciences] [Google Scholar]
- Vizgunov A, Goldengorin B, Kalyagin V, et al. Network approach for the Russian stock market[J]. Computational Management Science, 11,45-55 (2014) [CrossRef] [Google Scholar]
- Namaki A, Shirazi A H, Raei R, et al. Network analysis of a financial market based on genuine correlation and threshold method[J]. Physica A Statistical Mechanics & Its Applications, 390,3835-3841(2011) [CrossRef] [Google Scholar]
- Chi K T, Liu J, Lau F C M, et al. A network perspective of the stock market[J]. Journal of Empirical Finance, 17,659-667 (2010) [CrossRef] [Google Scholar]
- Huang Weiqiang, Zhuang Xintian, Yao Shuang. Topological Properties and Clustering Structure of China Stock Correlation Networks [J]. Management science, 21,94-103(2008) [Google Scholar]
- Yang Zhihui, Jia Hanmei. The Network Structure Analysis of Stock Returns Correlation [C]. Chinese Society of Automation Control Theory Committee B. 5732-5736 (2011) [Google Scholar]
- Chen H, Mai Y, Li S P. Analysis of network clustering behavior of the Chinese stock market[J]. Physica A Statistical Mechanics & Its Applications, 414,360-367 (2014) [CrossRef] [Google Scholar]
- Wang Hao, Li Guo Huan, Yao Hongliang, Li Junzhao. Stock Network Association Method Based on Influence Calculation Model.[J]. Computer Research and and Development,1,2137-214 (2014) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.