Open Access
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
Article Number 10010
Number of page(s) 6
Section Bio & Human Engineering
Published online 10 August 2018
  1. C. dos Santos and M. Gatti. Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 69–78(2014). [Google Scholar]
  2. Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751(2014). [CrossRef] [Google Scholar]
  3. R. Johnson and T. Zhang. Effective use of word order for text categorization with convolutional neural networks. CoRR, abs/1412.1058, 2014. [Google Scholar]
  4. Das A Bandyopadhyay S. Dr Sentiment knows everything![C]// Meeting of the Association for Computational Linguistics: Human Language Technologies: Systems Demonstrations. Association for Computational Linguistics, 50-55(2011). [Google Scholar]
  5. Pawar K K, Shrishrimal P Deshmukh R R. Twitter Sentiment Analysis: A Review[J]. 6(2015). [Google Scholar]
  6. Saif H Fernandez M He Y et al. Evaluation Datasets for Twitter Sentiment Analysis. A survey and a new dataset, the STS-Gold[C]// Workshop: Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives From Ai(2013). [Google Scholar]
  7. Ghiassi M Skinner J Zimbra D. Twitter brand sentiment analysis: A hybrid system using n -gram analysis and dynamic artificial neural network[J]. Expert Systems with Applications, 40,6266-6282(2013). [CrossRef] [Google Scholar]
  8. Zimbra D Ghiassi M Lee S. Brand-Related Twitter Sentiment Analysis Using Feature Engineering and the Dynamic Architecture for Artificial Neural Networks[C]// Hawaii International Conference on System Sciences. IEEE, 1930-1938(2016). [Google Scholar]
  9. Pandarachalil R Sendhilkumar S Mahalakshmi G S. Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach[J]. Cognitive Computation,7,254- 262(2015). [Google Scholar]
  10. Selvi C Ahuja C Sivasankar E. A Comparative Study of Feature Selection and Machine Learning Methods for Sentiment Classification on Movie Data Set[M]// Intelligent Computing and Applications. Springer India, 367-379(2015). [Google Scholar]
  11. Socher R Perelygin A Wu J Y, et al. Recursive deep models for semantic compositionality over a sentiment treebank[J](2013). [Google Scholar]
  12. Lu Y Castellanos M Dayal U et al. Automatic construction of a context-aware sentiment lexicon:an optimization approach[C]// International Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April. DBLP, 347-356(2011). [Google Scholar]
  13. Turney P D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews[C]// Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 417-424(2002). [Google Scholar]
  14. Zou H Tang X Xie B et al. Sentiment Classification Using Machine Learning Techniques with Syntax Features[C]// International Conference on Computational Science and Computational Intelligence. IEEE, 175-179(2016). [Google Scholar]
  15. Mullen T Collier N. Sentiment Analysis using Support Vector Machines with Diverse Information Sources[C]// Conference on Empirical Methods in Natural Language Processing, EMNLP 2004, A Meeting of Sigdat, A Special Interest Group of the Acl, Held in Conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain. DBLP, 412- 418(2004). [Google Scholar]
  16. Cui H Mittal V Datar M. Comparative experiments on sentiment classification for online product reviews[C]// National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, Usa. DBLP, 61–80(2006). [Google Scholar]
  17. Huifeng, Tan Songbo, Cheng Xueqi . Comparative Study on Chinese Emotion Classification Based on Supervised Learning[J]. Chinese Journal of Information. 21,88-94(2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.