Open Access
Issue
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
Article Number 03008
Number of page(s) 8
Section Cloud & Network
DOI https://doi.org/10.1051/matecconf/201818903008
Published online 10 August 2018
  1. Pimentel, M. A. F., Clifton, D. A., Lei, C., & Tarassenko, L. (2014) A review of novelty detection, Signal Processing vol 99 pp 215-249. [CrossRef] [Google Scholar]
  2. Ding, X., Li, Y., Belatreche, A., & Maguire, L. P. (2014) An experimental evaluation of novelty detection methods, Neurocomputing vol 135 pp 313-327. [CrossRef] [Google Scholar]
  3. Lauer, M. (2001) A Mixture Approach to Novelty Detection Using Training Data with Outliers, Machine Learning: ECML pp 300-311 [Google Scholar]
  4. Angiulli, F. (2012) Prototype-based domain description for one-class classification IEEE Transactions on Pattern Analysis & Machine Intelligence vol 34 pp 1131-44. [CrossRef] [Google Scholar]
  5. Tziakos, I., Cavallaro, A., & Xu, L. Q. (2010) Event monitoring via local motion abnormality detection in non-linear subspace Elsevier Science Publishers B. V. [Google Scholar]
  6. Tax, M. J., Duin, P. W. (1999) Support Vector Domain Description Pattern Recognition Letters vol 20 pp 1191-1199. [CrossRef] [Google Scholar]
  7. Zhou, Q. F., Zhou, H., Ning, Y. P., Yang, F., & Li, T. (2015) Two approaches for novelty detection using random forest Expert Systems with Applications vol 42 pp 4840-50. [Google Scholar]
  8. Polikar, & Robi. (2006) Ensemble based systems in decision making IEEE Circuits & Systems Magazine vol 6 pp 21-45. [CrossRef] [Google Scholar]
  9. Blake, C. (1998) Uci repository of machine learning databases Neural Information Processing Systems. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.