Open Access
Issue
MATEC Web Conf.
Volume 187, 2018
2018 4th International Conference on Chemical Materials and Process (ICCMP 2018)
Article Number 02003
Number of page(s) 5
Section Material Science and Engineering
DOI https://doi.org/10.1051/matecconf/201818702003
Published online 06 August 2018
  1. M. Avella, G. B. Gaceva, A. Bužarovska, M. E. Errico, G. Gentile, A. Grozdanov. Poly (lactic acid)-Based Biocomposites Reinforced with Kenaf Fibers. Journal of Applied Polymer science. 108, 3542–3551 (2008) [CrossRef] [Google Scholar]
  2. S. Joshi, U. Sharma, G. Goswami. Bio-Plastic from Waste Newspaper. International Conference on Emerging Trends of Research in Applied Sciences and Computational Techniques (2014) [Google Scholar]
  3. M. Jonoobi, J. Harun, A. P.Mathew, K. Oksman. Mechanical properties of cellulose nano-fiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology. 70, 1742-1747 (2010) [CrossRef] [Google Scholar]
  4. Y. Byun, Y. T. Kim. Chapter 14 – Bioplastics for Food Packaging: Chemistry and Physics. Innovations in Food Packaging (Second Edition) 353–368 (2014) [CrossRef] [Google Scholar]
  5. D. Trache, M. H. Hussin, C. T. Hui Chuin, S. Sabar, M.R. Fazita, O. F. Taiwo, T.M. Hassan, M.K. M. Haafiz. Microcrystalline cellulose: Isolation, characterization and biocomposites application A review. International Journal of Biological Macromolecules (ISSN: 0141-8130, 2016) [Google Scholar]
  6. R. Teygeler. Water hyacinth paper. Contribution to a sustainable future. Papier en Water/Paper and Water. 168-188 (2000) [Google Scholar]
  7. A. Mandal, D. Chakrabarty. Isolation of nano-cellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers. 86, 1291– 1299 (2008) [CrossRef] [Google Scholar]
  8. A. Abdulkhani, J. Hosseinzadeh, A. Ashori, S. Dadashi, Z. Takzare. Preparation and charac-terization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polymer Testing. 35, 73-79 (2014) [CrossRef] [Google Scholar]
  9. S. Ummartyotin, C. Pechyen. Microcrystalline cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging. Carbohydrate Polymers. 142, 133-140 (2016) [CrossRef] [Google Scholar]
  10. T. Kemala, E. Budianto, B. Soegiyono. Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (ε-caprolactone) with poly (vinyl alcohol) as emulsifier. Arabian Journal of Chemistry. 5, 103–108 (2012) [CrossRef] [Google Scholar]
  11. M.K. Mohamad Haafiza, A. Hassana, Z. Zakariac, I.M. Inuwaa, M.S. Islamd, M. Jawaide. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers. 98, 139-145 (2013) [CrossRef] [Google Scholar]
  12. G. H. Yew, A. M. Mohd Yusof, Z. A. Mohd Ishak, U. S. Ishiaku. Water absorption and enzymatic degradation of poly (lactic acid)/rice starch compo-sites. Polymer Degradation and Stability. 90, 488–500 (2005) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.