Open Access
Issue
MATEC Web Conf.
Volume 185, 2018
2018 The 3rd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2018)
Article Number 00008
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/201818500008
Published online 31 July 2018
  1. G.F. Mi, X.Y. Liu, K.F. Wang, J.T. Niu, Numerical simulation of low pressure die-casting aluminum wheel, China Foundry, Vol. 48, No. 1(2009) [Google Scholar]
  2. P.H. Huang, W.J. Wu, C.H. Shieh, Compute-aided design of low die-casting process of A356 aluminum wheels, Applied Mechanics and Materials, Vol. 864, pp. 173-178(2017). [CrossRef] [Google Scholar]
  3. P.H. Huang, W.J. Wu, C.H. Shieh, Numerical simulations of low pressure die-casting for A356 aluminum rims, Materials Science Forum, Vol. 893, pp. 276-280(2017). [Google Scholar]
  4. P.H. Huang, Y.T. Chen, B.T. Wang, An effective method for separating casting components from the runner system using vibration-induced fatigue damage, Int J Adv Manuf Technol, Vol. 74, pp. 1275-1282 (2014). [CrossRef] [Google Scholar]
  5. P.H. Huang, M.J. Guo, A study on the investment casting of 17-4PH stainless steel helical impeller of centrifugal pump, Materials Research Innovations, 19, S9, 77-81 (2015) DOI 10.1179/1432891715Z.0000000001924 [CrossRef] [Google Scholar]
  6. P.H. Huang, J.Y. Luo, S.C. Hung, C.J. Lin, H.H. Cheng, Optimal pouring system design for investment casting of cladding thin-plate heater using metallic mold flow Analyses, Applied Mechanics and Materials, Vol. 627, pp. 46-49(2014) [CrossRef] [Google Scholar]
  7. P.H. Haung, C.J. Lin, Computer-aided modeling and experimental verification of optimal gating system design for investment casting of precision rotor, Int J Adv Manuf Technol, Vol. 79, pp. 997-1006(2015) [CrossRef] [Google Scholar]
  8. J.K. Kuo, P.H. Huang, H.Y. Lai, J.R. Chen, Optimal gating system design for investment casting of 17-4PH stainless steel enclosed impeller by numerical simulation and experimental verification, International Journal of Advanced Manufacturing Technology, 92, 1093-1103 (2017) DOI: 10.1007/s00170-017-0198-0 [CrossRef] [Google Scholar]
  9. User manual of AnyCasting, version 6.0 [Google Scholar]
  10. Y.Y. Li, Prediction of shrinkage defect in steel casting for marine engine cylinder cover by numerical analysis (2007) [Google Scholar]
  11. X.G. Zhao, Z.X. Xiao, J.Z. Guo, Study on the threshold value of simulated shrinkage porosity for a large steel casting, Foundry, Vol. 64, No. 5, pp. 425-429(2015) [Google Scholar]
  12. J.H. Huang, Y. Cao, H.Q. Wang, W.T. Zheng, X.G. Yuan, Casting process design and optimization of martensite stainless steel pumping impeller, Foundry, Vol. 64, No. 4, pp. 317-320(2015). [Google Scholar]
  13. H.B. Ma, H.J. Chuan, Effect of structure of back cover on casting defect and performance, Foundry, Vol. 64, No. 10, pp. 1042-1045(2015) [Google Scholar]
  14. M.Y. Yang, Y.L. Chi, FEM Numerical simulation of temperature and defects prediction algorithm of casting solidification, Foundry, Vol. 66, No. 1, pp. 44-49(2017) [Google Scholar]
  15. S. Li, H.Y. Peng, Solidification process simulation and process optimization for the EPC process of the tail roller, Foundry, Vol. 64, No. 9, pp. 861-863(2015). [Google Scholar]
  16. J. Sun, S.X. Xu, J. Tang, F.F. Wang, Z.Q. Han, Development of squeeze casting technology for manufacturing aluminum alloy subframe for automobile, Foundry, Vol. 64, No. 1, pp. 17-21(2015) [Google Scholar]
  17. S. Li, R.H. Shen, X.G. Yuan, Effect of riser parameters on gray iron feeding, Foundry, Vol. 64, No. 11, pp. 1116-1119(2015) [Google Scholar]
  18. L.W. Pan, L.J. Zheng, H. Zhang, W.L. Gao, Applicability of shrinkage porosity prediction for casting with Niyama criterion, Journal of Beijing University of Aeronautics and Astronautics, Vol. 37, No. 12, pp. 1534-1540(2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.