Open Access
MATEC Web Conf.
Volume 181, 2018
The 1st International Symposium on Transportation Studies for Developing Countries (ISTSDC 2017)
Article Number 10003
Number of page(s) 9
Section Transportation Policy, Regulation, and Management
Published online 30 July 2018
  1. Dimitriou, H.T. A Developmental Approach to Urban Transport Planning: An Indonesian Illustration, Oxford University Press, Kualalurnpur, Malaysia. (1993), [Google Scholar]
  2. Ceder, Avishai. 2007. Public Transit Planning and Operation: Theory, Modeling and Practice. Transport. Elsevier: Butterworth-Heinemann. [CrossRef] [Google Scholar]
  3. Augustin,K.,Gerike,R.,Sanchez,M.J.M.,Ayala,C.Analysis of intercity bus markets on long distances in an established and a young market: The example of the U.S. and Germany. Res. Transp. Econ. 48,245–254, Elsevier,(2014). [CrossRef] [Google Scholar]
  4. Yatskiv, Irina, Vaira Gromule, Nadezda Kolmakova, and Irina Pticina. “Development Of The Indicator Of Service Quality.” Proceedings of the 9th International Conference “Reliability and Statistics in Transportation and Communication” (RelStat’09), 21–24 October 2009, Riga, Latvia, P. 124-133. ISBN 978-9984-818-21-4 Transport and Telecommunication Institute, Lomonosova 1, LV, no. October: 124–33. (2009). [Google Scholar]
  5. Hernandez, S., Monzon, A., Key factors for defining an efficient urban transport interchange: users’ perceptions. Accepted in J.Cities. (2015). [Google Scholar]
  6. Abreu e Silva, J., Bazrafshan, H., User satisfaction of intermodal transfer facilities in Lisbon, Portugal: analysis with structural equations modeling. Transp. Res. Rec. J. Transp. Res. Board 2350, 102–110.(2013) [CrossRef] [Google Scholar]
  7. Hine, J., Scott, J.,. Seamless, accessible travel: users’ views of the public transport journey and interchange. Transp. Policy 7 (3), 217–226. (2000). [CrossRef] [Google Scholar]
  8. Dell’Asin, Giulia. “Key Quality Factors And Travellers Profiles At Interurban Interchanges.” Thesis Doctoral, 53722. (2014). [Google Scholar]
  9. De Oña, J., de Oña, R., Eboli, L., Forciniti, C., Mazzulla, G., Transit passengers’ behavioural intentions: the influence of service quality and customer satisfaction. Transp. A Transp. Sci. 12 (5), 385–412. (2016). [Google Scholar]
  10. Eboli, Laura, Yanbing Fu, and Gabriella Mazzulla. “Multilevel Comprehensive Evaluation of the Railway Service Quality.” Procedia Engineering 137. Elsevier B.V.: 21–30. (2016). [CrossRef] [Google Scholar]
  11. Nathanail, E., Measuring the quality of service for messengers on the Hellenic railways. Transp. Res. Part A 42, 48–66. (2008). [Google Scholar]
  12. Iseki, H., & Taylor, B.D. Style versus service? An analysis of user perceptions of transit stops and stations. Journal of Public Transportation, 13(3), 23–48. (2010). [CrossRef] [Google Scholar]
  13. Wen, C.-H., Lan, L., Cheng, H.-L., Structural equation modeling to determine passenger loyalty toward intercity bus services. Transp. Res. Rec.: J. Transp. Res. Board 1927, 249–255. (2005). [CrossRef] [Google Scholar]
  14. Bordagaray, M., dell’Olio, L., Ibeas, A., Cecín, P. Modelling user perception of bus transit quality considering user and service heterogeneity. Transp. A: Transp. Sci., 1–17. (2013). [Google Scholar]
  15. Stevens, J., Applied Multivariate Statistics for the Social Sciences. Lawrence Erlbaum Associates, NJ. (1966). [Google Scholar]
  16. Golob, T.F., Structural equation modeling for travel behavior research. Transp. Res. Part B: Methodol. 37 (1), 1–25. (2003). [CrossRef] [Google Scholar]
  17. Wittwer, R. Cluster-analytical-creation of a typology of young adults´ travel behavior in Germany. España: Presented at the XI Congreso de Ingeniería del Transporte, CIT 2014, Santander. (2014). [Google Scholar]
  18. Bagozzi, R. P., & Yi, Y. On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. (1988). [CrossRef] [Google Scholar]
  19. Hair, J. F. J., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. Multivariate data analysis (6th ed.). Upper Saddle River, NJ: Pearson Prentice Hall. (2006). [Google Scholar]
  20. Anderson, J. C., & Gerbing, D. W, Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. (1988a). [Google Scholar]
  21. John, G., & Reve, T. The reliability and validity of key informant data from Dyadic relationships in marketing channels. Journal of Marketing Research, 19(4), 517–524. (1982). [CrossRef] [Google Scholar]
  22. Bagozzi, R. P., & Phillips, L. W. Representing and testing organizational theories: A holistic construal. Administrative Science Quarterly, 27(3), 459-489. (1982). [CrossRef] [Google Scholar]
  23. Fornell, C., & Larcker, D. F. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. (1981). [CrossRef] [Google Scholar]
  24. Kline, R. B. Principles and practice of structural equation modeling (2nd ed.). New York, NY: Guilford Press. (2005). [Google Scholar]
  25. Hair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. Multivariate data analysis: A global perspective (7th ed.). Upper Saddle River, NJ: Pearson Education. (2010). [Google Scholar]
  26. Janssens, W., Wijnen, K., Pelsmacker, P. D., & Kenhove, P. V. Marketing research with SPSS. Harlow, England; New York: Prentice Hall/Financial Times. (2008). [Google Scholar]
  27. Kaiser, H. F., & Rice, J. Educational and psychological measurement. Little Jiffy, Mark IV, 34, 11. (1974). [Google Scholar]
  28. Kim, J. A multidimensional and hierarchical model of integrated service quality for the Internet golf stores. Retrieved from (2003). [Google Scholar]
  29. Land, L., and C. Foreman. Neighborhood Intermodal Transfer Facilities. Report no. NCTR-392-16. Research and Special Programs Administration, U.S. Department of Transportation, Florida Department of Transportation and University of South Florida, Center for Urban Transportation Research, and National Center for Transport Research, Tampa, Fla., (2001). [Google Scholar]
  30. Tabachnick, B. G., & Fidell, L. S. Using multivariate statistics (5th ed.). Boston: Pearson/Allyn & Bacon. (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.