Open Access
Issue |
MATEC Web Conf.
Volume 176, 2018
2018 6th International Forum on Industrial Design (IFID 2018)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 4 | |
Section | Information Technology and Cloud Design Service Platform | |
DOI | https://doi.org/10.1051/matecconf/201817603009 | |
Published online | 02 July 2018 |
- Li Y, Zhou Y, Xu L, et al. Incremental sparse saliency detection. IEEE International Conference on Image Processing. IEEE Press, 2009: 3057-3060. [Google Scholar]
- B. Han, H. Zhu, and Y.D. Ding, 2011. Bottom-up Saliency based on weighted sparse coding residual. In Proceeding of ACM International conference on multimedia, 2011: 1117-1120. [Google Scholar]
- X. Li, H. Lu, Zhang, X. Ruan et al, 2013. Saliency detection via dense and sparse reconstruction. In IEEE International Conference on Computer Vision. [Google Scholar]
- Jia. C, J. Qi, X. Li et al. (2016), “Saliency detection via a unified generative and discriminative model”. Neurocomputing, Vol. 173 No.P2, pp. 406-417. [CrossRef] [Google Scholar]
- Achanta R, Shaji A, Smith K, et al. (2012), “Slic superpixels compared to state-of-the-art superpixel methods”. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34 No.12, pp. 2274– 2281. [Google Scholar]
- Zhu W, Liang S, Wei Y, et al, 2014. Saliency optimization from robust background detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA. [Google Scholar]
- Achanta R, Hemani S, Estrada F, et al, 2009. Frequency-tuned salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, USA. [Google Scholar]
- Liu T, Sun J, Zheng N, et al. “Learning to detect a salient object”. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011, 33(2): 353-367. [CrossRef] [Google Scholar]
- Alpert S, Galun M, Brandt A, et al. “Image segmentation by probabilistic bottom-up aggregation and cue integration”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 315-327. [Google Scholar]
- Harel J, Koch C, and Perona P, 2006. Graph-based visual saliency. In Proceedings of Neural Information Processing Systems. [Google Scholar]
- Hou X, Zhang L., 2007. Saliency detection: a spectral residual approach. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA. [Google Scholar]
- Margolin R, Tal A, and Zelnik-Manor L, 2013. What makes a patch distinct? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA. [Google Scholar]
- X. Shen, Y. Wu, 2012. “A Unified Approach to Salient Object Detection via Low Rank Matrix Recovery”. Computer Vision and Pattern Recognition, Vol. 23 No. 10, pp. 853-860. [Google Scholar]
- J. Yan, M Zhu, H Liu, et al. (2010), “Visual Saliency Detection via Sparse Pursuit”. IEEE Signal Processing Letters, Vol. 17 No. 8, pp. 739-742. [CrossRef] [Google Scholar]
- J Wang, H Lu, N Tong, et al. (2016), “Saliency Detection via Background and Foreground Seed Selection”. Neurocomputing, Vol. 152 No. C, pp. 359-268. [CrossRef] [Google Scholar]
- Qin Y, Lu H, Xu Y, et al, 2015. Saliency detection via cellular automata. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 111-119. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.