Open Access
Issue
MATEC Web Conf.
Volume 175, 2018
2018 International Forum on Construction, Aviation and Environmental Engineering-Internet of Things (IFCAE-IOT 2018)
Article Number 01027
Number of page(s) 4
Section Construction Materials
DOI https://doi.org/10.1051/matecconf/201817501027
Published online 02 July 2018
  1. J. Cheng, J. Liu, F. Huang, et al. Hydrogen-induced Cracking Behavior of Bainite Pipeline Steel[J]. Corrosion and Protection, 2010, 31(11): 833-836. [Google Scholar]
  2. Y. Zhang, Q. Cai, G. Xie. Influence of Microstructure on HIC-resistance in H2S Containing Solutions of High Strength Pipeline Steel X65-X70[J].Corrosion Science and Protection Technology, 2007, 19(6): 406-409. [Google Scholar]
  3. Gyu Tae Park, Sung Ung Koh. Hwan Gyo Jung. Effect of Microstructure on the Hydrogen Efficiency and Hy-drogen Induced Cracking of Linepipe Steel[J]. Corrosion Science, 2008, 50: 1866-1871. [Google Scholar]
  4. X. Peng, J. Liu, F. Huang, et al. Effect of Microstructure on Hydrogen-induced Cracking Propagation and Hydrogen Trapping Efficiency of Pipeline Steel[J]. Corrosion and Protection, 2013, 34(10): 882-885. [Google Scholar]
  5. C. Yin, X. Lan, C. Huo. Discussion on Factors Affecting Anti-HIC in Oil and Gas Pipeline[J]. Welded Pipe and Tube, 2002, 25(5) : 20-24. [Google Scholar]
  6. Q. Zhou. Analysis on Stepwise HIC of Pipeline Steel in Aqueous H2S Solutions[J]. Heat Treatment of Metals, 2004, 29(3) : 52-57. [Google Scholar]
  7. J. Cheng, B. Wang, L. Hu, et al. Effect of Segregation on Hydrogen Induced Crack Properties of X65 Pipeline Steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(4) : 126-132. [Google Scholar]
  8. Y. Li, Z. Du, L. Sun, et al. Resistance to HIC of High Grade Pipeline Steel[J]. Journal of Iron and Steel Reasearch, 2008, 20(12) : 50-54. [Google Scholar]
  9. Serna. S, Campillo. B, Albarran. J L. Crack Growth in Microalloyed Pipeline Steel for Sour Gas Transport[J]. Journal of Materials Engineering and Performance, 2005, 14(2) : 224-228. [CrossRef] [Google Scholar]
  10. Q. Zhang, C. Zhang, L. Zhang. Effect of Heat Treatment on Hydrogen-induced Cracking Resistance of X65 Pipeline Steel[J]. Heat Treatment of Metals, 2016, 41(11) : 123-128. [Google Scholar]
  11. C. Zhang, L. Zhang. Effect of Composition and Process of Microstructure and Properties for X65 HIC-resistance Pipeline Steel[J]. Baosteel Technology, 2015, 2 : 23-26. [Google Scholar]
  12. Al. Mansour, Alfantazi A M, EI-boujdaini M. Sul-fide Stress Cracking Resistance of API-X100 High Strength Low Alloy Steel[J]. Materials&Design, 2009, 30(10) : 4088-4094. [Google Scholar]
  13. Q. Zhou, G. Ji, J. Zhang, et al. The Effect of Sulfides on Hydrogen-induced Cracking of Pipe-Line Steel [J]. Journal of Materials Engineering, 2002(9):37-39. [Google Scholar]
  14. F Zhen, J Liu, F Huang, et al. Effect of the Nonmetallic inclusions on the HIC Behavior of X120 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(2) : 145-149. [Google Scholar]
  15. F. Huang, J. Liu, Z. Deng, et al. Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steels[J]. Materials Science and Engineering A, 2010, 527(26) : 6997-2001. [CrossRef] [Google Scholar]
  16. Elboujdaini M, Shehata M T, Sastri V S, et al. Hydrogen Induced Cracking and Effect of Non-Metallic Inclusions in Linepipe Steel[J]. Corrosion, 1987(9): 748. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.