Open Access
Issue
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 03084
Number of page(s) 8
Section Digital Signal and Image Processing
DOI https://doi.org/10.1051/matecconf/201817303084
Published online 19 June 2018
  1. Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G., and Scheunders, P., 2013. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience & Remote Sensing Magazine 1(2):6-36. [CrossRef] [Google Scholar]
  2. Stein, D. W. J., Beaven, S. G., Hoff, L. E., and Winter, E. M., 2002. Anomaly detection from hyperspectral imagery. Signal Processing Magazine IEEE 19(1):58-69. [CrossRef] [Google Scholar]
  3. Matteoli, S., Diani, M., and Corsini, G., 2010. A tutorial overview of anomaly detection in hyperspectral images. Aerospace & Electronic Systems Magazine IEEE 25(7):5-28. [CrossRef] [Google Scholar]
  4. Matteoli, S., Veracini, T., Diani, M., and Corsini, G., 2014. Background density nonparametric estimation with data-adaptive bandwidths for the detection of anomalies in multi-hyperspectral imagery. IEEE Geoscience & Remote Sensing Letters 11(1):163-167. [CrossRef] [Google Scholar]
  5. Reed, I. S., and Yu, X., 1990. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustics Speech & Signal Processing 38(10):1760-1770. [CrossRef] [Google Scholar]
  6. Billor, N., Hadi, A. S., and Velleman, P. F., 2000. BACON: blocked adaptive computationally efficient outlier nominators. Computational statistics & data analysis 34(3):279-298. [CrossRef] [Google Scholar]
  7. Du, B., and Zhang, L., 2011. Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience & Remote Sensing 49(5):1578-1589. [CrossRef] [Google Scholar]
  8. Guo, Q., Zhang, B., Ran, Q., Gao, L., Li, J., and Plaza, A., 2014. Weighted-RXD and linear filter-based RXD: improving background statistics estimation for anomaly detection in hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 7(6):2351-2366. [CrossRef] [Google Scholar]
  9. Carlotto, M. J., 2005. A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Transactions on Geoscience & Remote Sensing 43(2):374-387. [CrossRef] [Google Scholar]
  10. Chang, C. I., 2005. Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis. IEEE Transactions on Geoscience & Remote Sensing 43(3):502-518. [CrossRef] [Google Scholar]
  11. Zhang, H., He, W., Zhang, L., Shen, H., and Yuan, Q., 2014. Hyperspectral image restoration using low-rank matrix recovery. IEEE Transactions on Geoscience & Remote Sensing 52(8):4729-4743. [CrossRef] [Google Scholar]
  12. Cui, X., Tian, Y., Weng, L., and Yang, Y., 2014. Anomaly detection in hyperspectral imagery based on low-rank and sparse decomposition. Proceedings of SPIE - The International Society for Optical Engineering 9069(4). [Google Scholar]
  13. Chen, S. Y., and Chang, C. 2013. Low-rank decomposition-based anomaly detection. In SPIE Defense, Security, and Sensing. [Google Scholar]
  14. Candes, E. J., Li, X., Ma, Y., and Wright, J. 2009. Robust principal component analysis? J. ACM, 58(3):11. [Google Scholar]
  15. Zhou, T., and Tao, D., 2011. GoDec: randomized low_rank & sparse matrix decomposition in noisy case. In International Conference on Machine Learning, ICML, Bellevue, Washington. [Google Scholar]
  16. Zhang, Y., Du, B., Zhang, L. and Wang, S., 2016. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection. IEEE Transactions on Geoscience & Remote Sensing 54(3):1376-1389. [CrossRef] [Google Scholar]
  17. Sun, W., 2014. Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery. Journal of Applied Remote Sensing 8(1):83641. [CrossRef] [Google Scholar]
  18. Liu, G., Lin, Z., and Yu, Y., 2010. Robust subspace segmentation by low-rank representation. In International Conference on Machine Learning, pp. 663-670. [Google Scholar]
  19. Xu, Y., Wu, Z., Li, J., Plaza, A., and Wei, Z., 2016. Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Transactions on Geoscience & Remote Sensing 54(4):1990-2000. [CrossRef] [Google Scholar]
  20. Li, W., and Du, Q., 2015. Collaborative representation for hyperspectral anomaly detection. IEEE Transactions on Geoscience & Remote Sensing 53(3):1463-1474. [CrossRef] [Google Scholar]
  21. Rudin, L. I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. In Eleventh International Conference of the Center for Nonlinear Studies on Experimental Mathematics. [Google Scholar]
  22. Sun, L., Zheng, Y., and Jeon, B., 2017. Hyperspectral restoration employing low rank and 3D total variation regularization. In International Conference on Progress in Informatics and Computing. [Google Scholar]
  23. Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W., 2006. An iterative regularization method for total variation-based image restoration. Siam Journal on Multiscale Modeling & Simulation 4(2):460-489. [CrossRef] [Google Scholar]
  24. He, W., Zhang, H., Zhang, L., and Shen, H., 2015. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Transactions on Geoscience & Remote Sensing 54(1):178-188. [CrossRef] [Google Scholar]
  25. Aggarwal, H. K., and Majumdar, A., 2016. Hyperspectral image denoising using spatio-spectral total variation. IEEE Geoscience & Remote Sensing Letters 13(3):442-446. [Google Scholar]
  26. Chang, Y., Yan, L., Fang, H., and Luo, C., 2015. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Transactions On Image Processing 24(6):1852-1866. [CrossRef] [Google Scholar]
  27. Wang, Y., Peng, J., Zhao, Q., Leung, Y., Zhao, X., and Meng, D., 2017. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing pp(99):1-19. [Google Scholar]
  28. Goldstein, T., 2009. The Split Bregman method for L1-egularized problems. SIAM Journal on Imaging Sciences 2(2):1-21. [Google Scholar]
  29. Sonneveld, P., 1989. CGS: a fast Lanczos type solver for nonsymmetric linear systems. Siam J.sci.stat.comput 10(1):36-52. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.