Open Access
Issue
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 03053
Number of page(s) 5
Section Digital Signal and Image Processing
DOI https://doi.org/10.1051/matecconf/201817303053
Published online 19 June 2018
  1. Zone, R. 3-D Revolution:The History of Modern Stereoscopic Cinema. The University Press of Kentucky. (2012) [Google Scholar]
  2. Kumari, Deepika and Kaur, Kamaljit. A Survey on Stereo Matching Techniques for 3D Vision in Image Processing. International Journal of Engineering and Manufacturing. 6. 40-49. 10.5815/ijem.2016.04.05. (2016) [CrossRef] [Google Scholar]
  3. Nalpantidis Lazaros, Georgios Christou Sirakoulis, & Antonios Gasteratos. Review of stereo vision algorithms: from software to hardware. International Journal of Optomechatronics, 2(4), 435-462. (2008) [CrossRef] [Google Scholar]
  4. C. Ttofis, D. Stavrou, D. Koukounis, T. Theocharides and C. Panayiotou, "A laboratory course on 3D vision for robotic applications," 2013 IEEE International Conference on Microelectronic Systems Education (MSE), Austin, TX. 21-24 (2013) [CrossRef] [Google Scholar]
  5. Tippetts, Beau & Dah-Jye, Lee & Lillywhite, Kirt & Archibald, James. Review of stereo vision algorithms and their suitability for resource-limited systems. Journal of Real-Time Image Processing. 11. 10.1007/s11554-012-0313-2. (2013) [Google Scholar]
  6. D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured light. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), volume 1, 195-202, Madison, WI. (2003) [Google Scholar]
  7. D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nesic, X. Wang, and P. Westling. High-resolution stereo datasets with subpixel-accurate ground truth. In German Conference on Pattern Recognition (GCPR 2014), Münster, Germany. (2014) [Google Scholar]
  8. S. M. Seitz, B. Curless, J. Diebel, D. Scharstein and R. Szeliski, "A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms," 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). 519-528 (2006) doi: 10.1109/CVPR.2006.19 [Google Scholar]
  9. D. Scharstein and C. Pal. Learning conditional random fields for stereo. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, MN. (2007) [Google Scholar]
  10. H. Hirschmüller and D. Scharstein. Evaluation of cost functions for stereo matching. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, MN. (2007) [Google Scholar]
  11. L.D.Stefano,M.Marchionni,S.Mattoccia, “A Fast area-based stereo matching algorithm”,Image and Vision computing 22. 983-1005 (2004) [CrossRef] [Google Scholar]
  12. K.Muhlmann, D.Maier, J.Hesser and R.Manner, “Calculating dense disparity maps from color stereo images, an Efficient Implementation”. 79-88 (2002) [Google Scholar]
  13. E.Binaghi,I.Gallo,G.Marino,M.Raspanti, “Neural Adaptive Stereo Matching”,Pattern Recognition Letters 25 1743-1758 (2004) [CrossRef] [Google Scholar]
  14. S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo”, In ICCV. 1073–1080 (1998) [Google Scholar]
  15. P.H.S.Torra, A.Criminisi, “Dense stereo using pivoted dynamic programming”,Image and Vision Computing 22. 795-806 (2004) [CrossRef] [Google Scholar]
  16. W.Daolei, K.B.Lim, “Obtaining depth maps from segment based stereo matching using graph cuts”, in J.Vis.Commun.Image R. 22. 325-331 (2011) [CrossRef] [Google Scholar]
  17. J. Sun, N. Zheng, H.Y. Shum, “Stereo matching using belief propagation”, in IEEE Transactions on Pattern Analysis Machine Intelligence 25 (7). 787–800 (2003) [CrossRef] [Google Scholar]
  18. Q.Luo, J.Zhou, S.Yu, D.Xiao, “Stereo matching and occlusion detection with integrity and illusion sensitivity”, Pattern recognition letters 24. 1143-1149 (2003) [CrossRef] [Google Scholar]
  19. Kosaka, Akio, and A. C. Kak. Stereo Vision for Industrial Applications. Handbook of Industrial Robotics, Second Edition. John Wiley & Sons, Inc. 269-294 (2007) [Google Scholar]
  20. Nishida, Y., & Kitamura, K. Detecting Human Activity by Location System and Stereo Vision. Advances in Theory and Applications of Stereo Vision. InTech. (2011) [Google Scholar]
  21. Spampinato, G., Lidholm, J., Ekstrand, F., Ahlberg, C., Ekström, M., & Asplund, L. Navigation in a box: stereovision for industry automation. Advances in Theory & Applications of Stereo Vision. (2010) [Google Scholar]
  22. Cabani, I., Toulminet, G., & Bensrhair, A. New Robust Obstacle Detection System Using Color Stereo Vision. Advances in Theory and Applications of Stereo Vision. InTech. (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.