Open Access
Issue
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 03045
Number of page(s) 4
Section Digital Signal and Image Processing
DOI https://doi.org/10.1051/matecconf/201817303045
Published online 19 June 2018
  1. Yang Y, ZHANGD L, PENG H, et al. Frequency offset estimation in single-channel linear mixture ofhigh—order modulated signals. Acta Electronica Sinica. 43 (2015). [Google Scholar]
  2. Liu K, LI H, DAI X C.Single channel blind separation of cofrequency MPSK signals[A]. Proceedings of Communications, International Information Technology[C]. 42(2006). [Google Scholar]
  3. Tu S L, ZHENG H, GU N.Signal-Channel blind separation of two QPSK signals using per-survivor processing[A],Processings of IEEE Asia Pacific Conference on circuits and Systems[C]. 473 (2008). [Google Scholar]
  4. Jiao JP, LI YQ, WU B, et al. Research on acoustic signal recognition method for pipeline leakage with BP neural network[J], Chinese Journal of Scientific Instrument. 37 (2016). [Google Scholar]
  5. Yang Y, ZHANG D L, PENG H. The demodulation/decoding algorithm of PCMA mixed signals based on iteration processing[J]. Journal of Electronics & Information Technology. 34 (2012). [Google Scholar]
  6. N. Le Roux, and Y. Bengio, “Deep belief networks are compact universal approximators,” Neural computation. 8 (2010). [Google Scholar]
  7. Liao C H, HUANG Y L, ZHOU S D. Joint separation and demodulation algorithm for paired carrier multiple access signals[J]. Journal on Communications. 31 (2010). [Google Scholar]
  8. Yang Y, ZHANG D L, PENG H, et al. Single—channel blind separation of CO-fequeney modulated signals based on Gibbs sampler[J]. Journal on Communications. 36 (2015). [Google Scholar]
  9. Xu Cao, Xiaomin Zhang, Yang Yu. Deep Learning-Based Recognition of Underwater Target, IEEE international Conference on Digital Signal Processing. 89 (2017). [Google Scholar]
  10. P. Vincent, H. Larochelle, I. Lajoie et al., “Stacked denoising autoencoders: Learning useful representations in a deep net-Work with a local denoising criterion,” The Journal of Machine Learning Research. 11 (2010). [Google Scholar]
  11. Yu YW, YIN GF, YIN Y, et al. Defect recognition for radiographic image based on deep learning network[J]. Chinese Journal of Scientific Instrument. 35(2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.