Open Access
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 03012
Number of page(s) 5
Section Digital Signal and Image Processing
Published online 19 June 2018
  1. A.Ballman, Wu .K.L, Yu.P.S. A Web usage mining and analysis tool. IBM Systems Journal. 1998,89-105. [Google Scholar]
  2. P.buono. Integrating User Data and Collaborative Filter in a Web Recommendation System [J]. Third Workshop on Adaptive Hypertext and Hypermedia,2001,7(3):129-140. [Google Scholar]
  3. Mehmet H.Goker, Cynthia A.Thompson. A Conversational Recommendation System, DOI= Http:// [Google Scholar]
  4. Kwong H Y. Recommendation System for Large Online Book seller. DOI=Http:// [Google Scholar]
  5. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative Filtering Recommender System. [Google Scholar]
  6. Deng A L, Zhu Y Y, Shi B L. Collaborative filtering recommendation algorithm based on project score prediction [J]. Journal of software, 2003 (09):64-66. [Google Scholar]
  7. Deng A L, Zuo Z Z, Zhu Y Y. Collaborative filtering recommendation algorithm based on project clustering. Minicomputer system,2004,09(21). [Google Scholar]
  8. Xiong X, Wang W P, Ye Y X. Personalized recommendation algorithm based on concept stratification [J]. Computer application, 2005(05):89-90. [Google Scholar]
  9. Wu X Z, Run J, Su L M. Application of Individualized Recommendation Based on association rules in traditional business [J]. Lanzhou Academic Journal,2007(02):55-56. [Google Scholar]
  10. Li F, Li J H, Wang R L. Personalized recommendation algorithm based on commodity characteristics [J]. Computer engineering and Application,2007(17):89-91. [Google Scholar]
  11. Lin,Zhang L, He Q, et al. Paralled Implementationg of Apriori Algorithm Based on MapReduce [C]//The International Conference on Business Computing and Global Informatization. Washington, DC, USA,2011;475-478. [Google Scholar]
  12. Chen X G. Research and Realization of E-commerce Monitor System Based on Focused Web Crawler[J]. Information Technology Journal, 2013, 12(18). [Google Scholar]
  13. HARRY Z, SHENG S L. Learning weighted naive Bayesian with accurate ranking[A]. Washington, DC:IEEE,2004.567-570. [Google Scholar]
  14. Friedlnan N, Geige D, GoldszmidtM. Bayesian Network Classifiers. Maehine Learning,vol.29,pp131-163,1997. [CrossRef] [Google Scholar]
  15. Goldenberg A, Moore A. Tractable learning of large Bayes net structures from sparse data[C]//Proceedings of the twenty-first international conference on Machine learning. ACM, 2004: 44. [CrossRef] [Google Scholar]
  16. Fan J, Zhang X K, Tian X, et al. An Adaptive Topic Crawler for Electronic Public Opinion[J]. Advanced Materials Research, 2013, 765: 1451-1455. [CrossRef] [Google Scholar]
  17. Salton G, Wong A, Yang C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11): 613-620. [CrossRef] [Google Scholar]
  18. Mercer R L. Class-Based n-gram Models of Natural Language[J]. Computational Linguistics, 1992, 18(4):18-4. [Google Scholar]
  19. Guyon I, Elisseeff A. An Introduction of Variable and Feature Selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.