Open Access
Issue
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
Article Number 02044
Number of page(s) 5
Section Automation and Nontraditional Manufacturing
DOI https://doi.org/10.1051/matecconf/201817302044
Published online 19 June 2018
  1. Naude, W. & Santos-Paulino, A. U. Fragile States: Causes, Costs, and Responses. Oxford: Oxford University Press, 2011: 23. [Google Scholar]
  2. Mcloughlin, C.. Topic guide on fragile states. Birmingham: University of Birmingham, UK.2012: 6-29. [Google Scholar]
  3. Sanin, F. G.. Evaluating State Performance: A Critical View of State Failure and Fragility Index. European Journal of Development Research, 2011, 23(1): 20-42. [CrossRef] [Google Scholar]
  4. Haken, N. &, Messner, J.J. Fragile States Index2014. Foreign Policy (July-August)2014: 10. [Google Scholar]
  5. Menkhaus, K.. State Fragility as A Wicked Problem. PRISM, 2010, 1(2): 85-100. [Google Scholar]
  6. Mata, J. F. & Ziaja S.. Users’Guide on Measuring Fragility. Bonn: German Development Insitute, 2009: 24/5 [Google Scholar]
  7. Ziaja S.. What Do Fragility Indices Measure? Z Vgl Polit Wiss, 2012, 6: 39-64. [CrossRef] [Google Scholar]
  8. Call, C.. The Fallacy of The“Failed States”. Third World Quarterly, 2008, (8): 1491-1507. [CrossRef] [Google Scholar]
  9. Grävingholt, J. & Ziaja S.. State Fragility: To-wards a Multi-Dimensional Empirical Typology. DIE Discussion Paper, 2012. [Google Scholar]
  10. Kaplan, S.. Identify Truly Fragile States. The Washington Quarterly, 2014, (37)1: 49-63. [CrossRef] [Google Scholar]
  11. Marshall, M. & Cole, B.. Global Report2011: Conflict, Governance and State Fragility. Foreign Policy Bulletin, 2011, 18(5). [Google Scholar]
  12. “Support-vector networks”, C. Cortes, V. Vapnik - Machine Learning, 20, 273-297 (1995). [Google Scholar]
  13. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. [Google Scholar]
  14. Breiman L, Friedman J, Olshen R. Classification and regression trees. et al. 1984 [Google Scholar]
  15. Friedman J H. Greedy function approximation: A gradient boosting machine. The Annals of Statistics. 2001 [Google Scholar]
  16. Stochastic gradient boosting[J] . Jerome H. Friedman. Computational Statistics and Data Analysis . 2002 (4) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.