Open Access
Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 5 | |
Section | Modeling, Analysis, and Simulation of Intelligent Manufacturing Processes | |
DOI | https://doi.org/10.1051/matecconf/201817301022 | |
Published online | 19 June 2018 |
- Huang L, Nie J, Wei Z. Human body segmentation based on shape constraint[J]. Machine Vision and Applications, (2007):1-10. [Google Scholar]
- Yan P, Xu S, Turkbey B, et al. Discrete deformable model guided by partial active shape model for TRUS image segmentation[J]. IEEE Transactions on Biomedical Engineering,57.5(2010): 1158-1166. [Google Scholar]
- Rousson M, Paragios N. Prior knowledge level set represent & visual grouping[J]. International Journal of Computer Vision, 76.3(2008): 231-243. [CrossRef] [Google Scholar]
- LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521.7553(2015): 436-444. [CrossRef] [Google Scholar]
- Fischer A, Igel C. An introduction to restricted Boltzmann machines[J]. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, (2012): 14-36. [CrossRef] [Google Scholar]
- Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 18.7(2006): 1527-1554. [Google Scholar]
- He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C], Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2016): 770-778. [Google Scholar]
- Elfwing S, Uchibe E, Doya K. Expected energy-based restricted Boltzmann machine for classification[J]. Neural Networks, 64(2015): 29-38. [CrossRef] [Google Scholar]
- Zhao Z, Jiao L, Zhao J, et al. Discriminant deep belief network for high-resolution sar image classification[J]. Pattern Recognition, 61(2017): 686-701. [CrossRef] [Google Scholar]
- Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C], Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2015): 1-9. [Google Scholar]
- Smolensky P. Information processing in dynamical systems: Foundations of harmony theory[R]. Colorado University at Boulder Dept of Computer Science, (1986). [Google Scholar]
- Guillaume Desjardins, Yoshua Bengio. Empirical Evaluation of Convolutional RBMs for Vision[J], DIRO, Université de Montréal, (2008):1-13. [Google Scholar]
- Hinton. A practical guide to training restricted Boltzmann machines. 9.1(2010): 599-619. [Google Scholar]
- Honglak Lee, Roger Grosse, Rajesh Ranganath, elt. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations[C]. Proceedings of the 26th International Conference on Machine Learning, (2009):609-616. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.