Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 22034
Number of page(s) 8
Section Posters
DOI https://doi.org/10.1051/matecconf/201816522034
Published online 25 May 2018
  1. Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech ASME 1957;E24:351–69. [Google Scholar]
  2. Anderson TL. Fracture Mechanics Fundamentals and Applications. 2nd Ed. CRC Press; (1995). [Google Scholar]
  3. Paris PP, Erdogan FF. A Critical Analysis of Crack Propagation Laws. ASME J Basic Eng (1963);85:528–33. [Google Scholar]
  4. Sutton MA, Orteu J-J, Schreier HW. Image correlation for shape, motion and deformation measurements. New York: Springer; (2009). [Google Scholar]
  5. de Matos PFP, Nowell D. Numerical simulation of plasticity-induced fatigue crack closure with emphasis on the crack growth scheme: 2D and 3D analyses. Eng Fract Mech (2008);75:2087–114. [Google Scholar]
  6. Nowell D, Paynter RJH, De Matos PFP. Optical methods for measurement of fatigue crack closure: moiré interferometry and digital image correlation. Fatigue Fract Eng Mater Struct (2010);33:778–90. [CrossRef] [Google Scholar]
  7. Westergaard HM. Bearing pressures and cracks. J Appl Mech (1939);61:A49–53. [Google Scholar]
  8. Williams ML. On the stress distribution at the base of a stationary crack. J Appl Mech (1957);24:109–14. [Google Scholar]
  9. Christopher CJ, James MN, Patterson EA, Tee KF. Towards a new model of crack tip stress fields. Int J Fract (2007);148:361–71. [CrossRef] [Google Scholar]
  10. Ramesh K, Gupta S, Kelkar AA. Evaluation of stress field parameters in fracture mechanics by photoelasticity - revisited. Eng Fract Mech (1997);56:25-41-45. [Google Scholar]
  11. Díaz FA, Yates JR, Patterson EA. Some improvements in the analysis of fatigue cracks using thermoelasticity. Int J Fatigue (2004);26:365–76. [CrossRef] [Google Scholar]
  12. McNeill SR, Peters WH, Sutton MA. Estimation of stress intensity factor by digital image correlation. Eng Fract Mech (1987);28:101–12. [CrossRef] [Google Scholar]
  13. Yoneyama S, Kitagawa A, Iwata S, Tani K, Kikuta H. Bridge deflection measurement using digital image correlation. Exp Tech (2007);31:34–40. [CrossRef] [Google Scholar]
  14. Sutton MA, Li N, Joy DC, Reynolds AP, Li X. Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech (2007);47:775–87. [CrossRef] [Google Scholar]
  15. Carroll JD, Abuzaid W, Lambros J, Sehitoglu H. High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. Int J Fatigue (2013);57:140–50. [CrossRef] [Google Scholar]
  16. Sanford RJ, Dally JW. A general method for determining mixed-mode stress intensity factors from isochromatic fringe patterns. Eng Fract Mech (1979);11:621–33. [CrossRef] [Google Scholar]
  17. Yates JR, Zanganeh M, Tai YH. Quantifying crack tip displacement fields with DIC. Eng Fract Mech (2010);77:2063–76. [CrossRef] [Google Scholar]
  18. Hamam R, Hild F, Roux S. Stress intensity factor gauging by digital image correlation: Application in cyclic fatigue. Strain (2007);43:181–92. [CrossRef] [Google Scholar]
  19. Roux S, Hild F. Stress intensity factor measurements from digital image correlation: postprocessing and integrated approaches. Int J Fract (2006);140:141–57. [CrossRef] [Google Scholar]
  20. Qian J, Fatemi A. Mixed mode fatigue crack growth: A literature survey. Eng Fract Mech (1996);55:969–90. [CrossRef] [Google Scholar]
  21. Socie D, Marquis, Gary. Multiaxial Fatigue. SAE International; (1999). [Google Scholar]
  22. Yoneyama S, Ogawa T, Kobayashi Y. Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods. Eng Fract Mech (2007);74:1399–412. [CrossRef] [Google Scholar]
  23. Réthoré J, Gravouil a., Morestin F, Combescure a. Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral. Int J Fract (2005);132:65–79. [CrossRef] [Google Scholar]
  24. López-Crespo P, Burguete RL, Patterson EA, Shterenlikht A, Withers PJ, Yates JR. Study of a crack at a fastener hole by digital image correlation. Exp Mech (2009);49:551–9. [CrossRef] [Google Scholar]
  25. Carlson RL, Kardomateas GA, Bates PR. The effects of overloads in fatigue crack growth. Int J Fatigue (1991);13:453–60. [CrossRef] [Google Scholar]
  26. Salvati E, O’Connor S, Sui T, Nowell D, Korsunsky AM. A study of overload effect on fatigue crack propagation using EBSD, FIB-DIC and FEM methods. Eng Fract Mech (2015);167:1–14. [Google Scholar]
  27. de Matos PFP, Nowell D. Experimental and numerical investigation of thickness effects in plasticityinduced fatigue crack closure. Int J Fatigue (2009);31:1795–804. [CrossRef] [Google Scholar]
  28. Yusof F, Lopez-Crespo P, Withers PJ. Effect of overload on crack closure in thick and thin specimens via digital image correlation. Int J Fatigue (2013);56:17–24. [CrossRef] [Google Scholar]
  29. Sander M, Richard H. Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth. Int J Fatigue (2006);28:583–91. [CrossRef] [Google Scholar]
  30. Sander M, Richard HA. Finite element analysis of fatigue crack growth with interspersed mode I and mixed mode overloads. Int J Fatigue (2005);27:905–13. [CrossRef] [Google Scholar]
  31. Srinivas V, Vasudevan P. Study of the influence of mixed mode overload on mode I fatigue crack propagation. Int J Press Vessel Pip (1993);56:409–17. [CrossRef] [Google Scholar]
  32. Mokhtarishirazabad M, Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zanganeh M. Optical and analytical investigation of overloads in biaxial fatigue cracks. Int J Fatigue (2017);100:583–90. [Google Scholar]
  33. Chaves V. Ecological criteria for the selection of materials in fatigue. Fatigue Fract Eng Mater Struct (2014);37:1034–42. [CrossRef] [Google Scholar]
  34. Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zapatero J. Study of crack orientation and fatigue life prediction in biaxial fatigue with critical plane models. Eng Fract Mech (2015);136:115–30. [Google Scholar]
  35. ASTM E647-15, Standard Test Method for Measurement of Fatigue Crack Growth Rates. West Conshohocken, PA: (2015). [Google Scholar]
  36. Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zapatero J. Characterisation of crack-tip fields in biaxial fatigue based on high-magnification image correlation and electro-spray technique. Int J Fatigue (2015);71:17–25. [CrossRef] [Google Scholar]
  37. Zanganeh M, Lopez-Crespo P, Tai YH, Yates JR. Locating the crack tip using displacement field data: a comparative study. Strain (2013);49:102–15. [CrossRef] [Google Scholar]
  38. Vic-2D V6 Reference Manual, Correlated Solutions Incorporated (C.S.Inc). [Google Scholar]
  39. Mokhtarishirazabad M, Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zanganeh M. Evaluation of cracktip fields from DIC data: A parametric study. Int J Fatigue (2016);89:11–9. [CrossRef] [Google Scholar]
  40. S. Suresh. Fatigue of Materials. 2nd ed. New York: Cambridge University Press; (1998). [Google Scholar]
  41. Withers PJ, Lopez-Crespo P, Kyrieleis a., Hung Y-C. Evolution of crack-bridging and crack-tip driving force during the growth of a fatigue crack in a Ti/SiC composite. Proc R Soc A Math Phys Eng Sci (2012);468:2722–43. [CrossRef] [Google Scholar]
  42. Joyce JA, Sutton GE. An automated method of computered-controlled low-cycle fatigue crack growth testing using the eslastic-plastic parameter cyclic J. In: Cullen WH, Landgraf RW, Kaizand LR, Underwood JH, editors. Autom. test methods Fract. fatigue crack growth, American Society for Testing and Materials; (1985), 225–47. [Google Scholar]
  43. Skorupa M, Beretta S, Carboni M, Machniewicz T. An algorithm for evaluating crack closure from local compliance measurements. Fatigue Fract Eng Mater Struct (2002);25:261–73. [CrossRef] [Google Scholar]
  44. DTD AFGROW Handbook. n.d. [Google Scholar]
  45. Lopez-Crespo P, Mostafavi M, Steuwer A, Kelleher JF, Buslaps T, Withers PJ. Characterisation of overloads in fatigue by 2D strain mapping at the surface and in the bulk. Fatigue Fract Eng Mater Struct (2016);39:1040–8. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.