Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 20002
Number of page(s) 9
Section Very High Cycle Fatigue
DOI https://doi.org/10.1051/matecconf/201816520002
Published online 25 May 2018
  1. Marines I, Bin X, Bathias C. An understanding of very high cycle fatigue of metals. Int.J.Fatigue, 25(9-11),1101-7(2013) [CrossRef] [Google Scholar]
  2. Miller KJ, O’Donnell WJ. The fatigue limit and its elimination. Fatigue Fract Eng Mater Struct,7, 545-57(1999) [Google Scholar]
  3. Bathias C, Drouillac L, Le Francois P. How and why the fatigue S-N curve does not approach a horizontal asymptote. Int.J.Fatigue, 23,143-51(2001) [CrossRef] [Google Scholar]
  4. Murakami Y, Nomoto T, Ueda T. On the mechanism of fatigue failure in the super long life regime (N>107 cycles). Part I: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct, 11,893-902(2000) [Google Scholar]
  5. Mason W P. Piezoelectric crystals and their application in Ultrasonic. (New York: Van Nostrand, 1950) [Google Scholar]
  6. Bathias C. Piezoelectric fatigue testing machines and devices. Int.J.Fatigue, 28,1438-1445(2006) [Google Scholar]
  7. Stanzl-Tchegg SE. Fracture mechanisms and fracture mechanics at ultrasonic frequencies. Fatigue Fract Eng Mater Struct,22(7),567-79(1999) [CrossRef] [Google Scholar]
  8. Wang QY, Berard JY, Dubarre A, Baudry G, Rathery S, Bathias C. Gigacycle fatigue of ferrousalloys.Fatigue Fract Eng Mater Struct,8,667-72(1999) [CrossRef] [Google Scholar]
  9. Xue Hongqian, et.al. The design of specimen for fatigue test at ultrasonic frequency. Acta Aeronautics et Astronautics sinica,25(4),425-428(2004) [Google Scholar]
  10. Peng WJ, et.al. Ultrasonic fatigue test method of several kinds specimen. Journal of Wuhan Engineering Institute, 28(2),1-4(2016) [Google Scholar]
  11. Y. Furuya. Specimen size effects on gigacycle fatigue properties of high-strength steel under ultrasonic fatigue testing. Script Materialia,58, 1014-1017(2008) [CrossRef] [Google Scholar]
  12. Y. Furuya, et al. 1010-cycle fatigue properties of 1800MPa-class JIS-SUP7 spring steel. Fatigue Fract Engng Mater Struc,26,641-645(2003) [CrossRef] [Google Scholar]
  13. B. Pyttel, D. Schwerdt, C. Berger. Very high cycle fatigue - Is there a fatigue limit? Int.J.Fatigue, 33,49-58(2011) [Google Scholar]
  14. H. Itoga, K. Tokaji, M. Nakajima, H.-N. Ko. Effect of surface roughness on step-wise S–N characteristics in high strength steel. Int.J.Fatigue, 25,379-385(2003) [Google Scholar]
  15. Yang Zhenguo, et.al. Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition. Acta metallurgica sinica, 41(11),1136-1142(2005) [Google Scholar]
  16. Yang Zhenguo, et.al. On the critical inclusion size of high strength steel under ultra-high cycle fatigue. Mater Sci Eng A, 2006, 427A,167-174(2006) [CrossRef] [Google Scholar]
  17. Peng WJ, et.al. Ultrasonic fatigue tests on a high strength steel for welded structure. Advanced Materials Research, 503-504 :714-717 (2012) [CrossRef] [Google Scholar]
  18. Isamu Nonaka, Sota Setowaki, Yuji Ichikawa. Effect of load frequency on high cycle fatigue strength of bullet train axle steel. Int.J.Fatigue, 60(1),43-47(2014) [CrossRef] [Google Scholar]
  19. Zhang Yangyang, Duan Zheng, Shi HuiJi. Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies. Science China Physics, Mechanics and Astronomy,56(3),617-623 (2013) [CrossRef] [Google Scholar]
  20. Peng WJ, et.al. An investigation of the fatigue property of ultra-high strength mould steel at 130 Hz and 20 kHz.Applied Mechanics and Materials, 239-240, 96-99 (2013) [CrossRef] [Google Scholar]
  21. Aiguo Zhao, et.al. Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int.J.Fatigue, 38,46-56(2012) [CrossRef] [Google Scholar]
  22. I.Marines, et.al. Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. Int.J.Fatigue,25,1037-1046(2003) [Google Scholar]
  23. Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi. Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz. Scripta Materialia,46,157-162(2002) [CrossRef] [Google Scholar]
  24. H. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg. Influence of loading frequency on the high cycle fatigue propertiesof AlZnMgCu1.5 aluminium alloy.Materials Science and Engineering A,314,48-54(2001) [Google Scholar]
  25. Stanzl-Tschegg SE, Mayer H. Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles. Int.J.Fatigue,23,231-237(2001) [CrossRef] [Google Scholar]
  26. Chen Q, et. al. Small crack behavior and fracture of nickel-based super alloy under ultrasonic fatigue. Int.J.Fatigue, 10,1227-32(2005) [CrossRef] [Google Scholar]
  27. Wang Hong, Gao Qing. Effect of load frequency on fatigue behavior of material in ultrasonic fatigue testing. PTCA (Part: A PHYS.TEST), 41(9),433-435(2005) [Google Scholar]
  28. Benjamin Guennec, et.al. Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior. Int.J.Fatigue,2014,66, 29-38(2014) [CrossRef] [Google Scholar]
  29. Benjamin Guennec, et.al. Dislocation-based interpretation on the effect of the loading frequency on the fatigue properties of JIS S15C low carbon steel. Int.J.Fatigue,70, 328-341(2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.