Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 19006
Number of page(s) 8
Section Thermo-Mechanical Fatigue
DOI https://doi.org/10.1051/matecconf/201816519006
Published online 25 May 2018
  1. T. Seifert, H. Riedel, “Fatigue Life Prediction of High Temperature Components in Combustion Engines and Exhaust Systems,” EASC (2009) [Google Scholar]
  2. F. T. Shiao, T. S. Lui, L. H. Chen, and S. F. Chen, “Eutectic cell wall morphology and tensile embrittlement in ferritic spheroidal graphite cast iron,” Metall. Mater. Trans. A, vol. 30, no. July, pp. 1775–1784 (1999). [CrossRef] [Google Scholar]
  3. H.-M. Lin, T.-S. Lui, and L.-H. Chen, “Effect of Silicon Content on Intergranular Embrittlement of Ferritic Spheroidal Graphite Cast Iron Suffered from Cyclic Heating.,” Mater. Trans., vol. 44, no. 1, pp. 173– 180 (2003) [CrossRef] [Google Scholar]
  4. H.-M. Lin, T.-S. Lui, and L.-H. Chen, “Effect of Silicon Content on Intergranular Embrittlement of Ferritic Spheroidal Graphite Cast Iron Suffered from Cyclic Heating.,” Mater. Trans., vol. 44, no. 1, pp. 173– 180 (2003) [CrossRef] [Google Scholar]
  5. S. F. Chen, T. S. Lui, and L. H. Chen, “The effect of phosphorus segregation on the intermediate-temperature embrittlement of ferritic, spheroidal graphite cast iron,” Metall. Mater. Trans. A, vol. 25, no. 3, pp. 557–561 (1994) [CrossRef] [Google Scholar]
  6. X. Wu, G. Quan, R. MacNeil, Z. Zhang, and C. Sloss, “Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions,” Metall. Mater. Trans. A, vol. 45, no. 11, pp. 5085–5097 (2014) [CrossRef] [Google Scholar]
  7. T. Kobayashi and K. Nishino, “Embrittlement of Ferritic Spheroidal Graphite Cast Iron by Magnesium,” J. Japan Foundry Eng. Soc., vol. 70, p‥273-278 (1998) [Google Scholar]
  8. P. H. Riedel, “Fracture at high temperatures”, Materials Research and Engineering. Springer, Berlin, Heidelberg (1987) [Google Scholar]
  9. V. Schivje, J, “Some formulas for the crack opening stress level“, Eng. Fracture Mechanics., 14, 461-465 (1981) [CrossRef] [Google Scholar]
  10. C.F. Shih, Tables of Hutchinson-Rice-Rosengren singular field quantities, Tech. rep. Brown University Report MRL E-147 (1983) [Google Scholar]
  11. H. H. Heitmann, H. Vehoff, and P. Neumann, “Life prediction for random load fatigue based on the growth behavior of microcracks,” in Advances in fracture research 84 – proceedings of ICF6, pp. 3599–3606 (1984) [Google Scholar]
  12. W. Schmitt, R. Mohrmann, H. Riedel, A. Dietsche, A. Fischersworring-Bunk, Modelling the fatigue life of automobile components, In: Fatigue 2002 - Proceedings of the Eight International Fatigue Congress held 3-7 June 2002, Stockholm, Sweden (Ed. A.F. Blom), 781-788 (2002) [Google Scholar]
  13. J. C. Newman, A crack opening stress equation for fatigue crack growth, Int. J. Fract., Vol. 24, 131-135 (1984) [CrossRef] [Google Scholar]
  14. T. S. Lui and C. G. Chao, “High-temperature properties of ferritic spheroidal graphite cast iron,” J. Mater. Sci., vol. 24, no. 7, pp. 2503–2507 (1989) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.