Open Access
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 14004
Number of page(s) 8
Section High Cycle Fatigue, Fatigue at Notches
Published online 25 May 2018
  1. R.S. Qi, M. Jin, X.G. Liu and B.F. Guo, Formation Mechanism of Inclusion Defects in Large Forged Pieces, J Iron Steel Res Int 23 (6), 531-538, 2016. [CrossRef] [Google Scholar]
  2. H. Dehmani, C. Brugger, T. Palin-Luc, C. Mareau and S. Koechlin, Experimental study of the impact of punching operations on the high cycle fatigue strength of Fe–Si thin sheets, Int J Fatigue 82, 721-729, 2016. [CrossRef] [Google Scholar]
  3. E. Pessard, B. Abrivard, F. Morel, F. Abroug, P. Delhaye, The effect of quenching and defects size on the HCF behaviour of Boron steel, Int J Fatigue 68, 80-89, 2014. [CrossRef] [Google Scholar]
  4. J.O. Peters, B.L. Boyce, A.W. Thompson, R.O. Ritchie, O. Roder, Role of foreign-object damage on thresholds for high cycle fatigue in Ti-6Al-4V, Metall Mater Trans A 31 (6), 1571-1583, 2000. [CrossRef] [Google Scholar]
  5. Y. Murakami and M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength, Int J Fatigue 16 (3), 163-182, 1994. [Google Scholar]
  6. M. Endo and Y. Murakami, Effects of an Artificial Small Defect on Torsional Fatigue Strength of Steels, J Eng Mater Tech 109 (2), 124-129, 1987. [CrossRef] [Google Scholar]
  7. P. Lukas, L. Kunz, B. Weiss, R. Stickler, Notch size effect in fatigue, Fatigue Fract Eng Mater Struct 12 (3), 175-186, 1989. [CrossRef] [Google Scholar]
  8. H.W. Höppel, L. May, M. Prell and M. Göken, Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime, Int J Fatigue 33 (1), 10-18, 2011. [CrossRef] [Google Scholar]
  9. A. Järvenpää, L.P. Karjalainen and M. Jaskari, Effect of grain size on fatigue behavior of Type 301LN stainless steel, Int J Fatigue 65, 93-98, 2014. [CrossRef] [Google Scholar]
  10. G.J. Deng, S.T. Tu, X.C. Zhang, Q.Q. Wang and C.H. Qin, Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169, Eng Fract Mech 134, 433-450, 2015. [CrossRef] [Google Scholar]
  11. E.O. Hall, The deformation and ageing of mild steel, Proc Phys Soc London, Sec B 64 (9), 742, 1951. [CrossRef] [Google Scholar]
  12. N.J. Petch, The cleavage strength of polycrystals, J Iron Steel Inst 174, 25-28, 1953. [Google Scholar]
  13. A. Turnbull and E.R. De Los Rios, The effect of grain size on the fatigue of commercially pure aluminium, Fatigue Fract Eng Mater Struct 18 (12), 1460-2695, 1995. [Google Scholar]
  14. K.S. Chan, Roles of microstructure in fatigue crack initiation, Int J Fatigue 32 (9), 1428-1447, 2010. [CrossRef] [Google Scholar]
  15. J. Saga, M. Hayashi and Y. Nishio, Effect of Grain Size on Fatigue Damage in Pure Aluminium, J Soc Mater Sci Japan 26 (282), 289-295, 1977. [CrossRef] [Google Scholar]
  16. J. Saga, M. Hayashi and Y. Nishio, Effect of Grain Size on Fatigue Crack Propagation in Aluminium, J Soc Mater Sci Japan 26 (291), 1202-1207, 1977. [CrossRef] [Google Scholar]
  17. A.W. Thompson and W.A. Backofen, The effect of grain size on fatigue, Acta Metall 19 (7), 597-606, 1971. [CrossRef] [Google Scholar]
  18. R. Guerchais, N. Saintier, F. Morel and C. Robert, Micromechanical investigation of the influence of defects in high cycle fatigue, Int J Fatigue 67, 159-172, 2014. [CrossRef] [Google Scholar]
  19. C.A. Sweeney, W. Vorster, S.B. Leen, E. Sakurada, P.E. McHugh and F.P.E. Dunne, The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation, J Mech Phys Solids 61 (5), 1224-1240, 2013. [CrossRef] [Google Scholar]
  20. V.V.C. Wan, D.W. MacLachlan, F.P.E. Dunne, A stored energy criterion for fatigue crack nucleation in polycrystals, Int J Fatigue 68, 90-102, 2014. [Google Scholar]
  21. R.W. Karry and T.J. Dolan, Influence of grain size on fatigue notch-sensitivity, ASTM Proceeding (53), 789-804, 1953. [Google Scholar]
  22. P. Lorenzino and A. Navarro, Grain size effects on notch sensitivity, Int J Fatigue 70, 205-215, 2015. [CrossRef] [Google Scholar]
  23. M. Vincent, Y. Nadot, C. Nadot-Martin and A. Dragon, Interaction between a surface defect and grain size under high cycle fatigue loading: Experimental approach for Armco iron, Int J Fatigue 87, 81-90, 2016. [CrossRef] [Google Scholar]
  24. K.U Snowden, Dislocation arrangements during cyclic hardening and softening in A1 crystals, Acta Metall 11 (7), 675-684, 1963. [CrossRef] [Google Scholar]
  25. Y.B. Xia, Z.G Wang and R.H. Wang, Secondary Hardening and Dislocation Evolution in Low Cycle Fatigue of Polycrystalline Aluminium, Phys Status Solidi A 120 (1), 125-132, 1990. [CrossRef] [Google Scholar]
  26. R. Fougères, Early stages of fatigue damage in aluminium and aluminium alloys, J Phys IV (C7), 669-678, 1993. [Google Scholar]
  27. T. Fujii, N. Sawatari, S. Onaka and M. Kato, Cyclic deformation of pure aluminum single crystals with double-slip orientations, Mater Sci Eng A 387, 486-490, 2004. [CrossRef] [Google Scholar]
  28. A. Giese, A. Styczynski and Y. Estrin, Cyclic hardening behaviour of polycrystalline aluminium under tension-compression, Mater Sci Eng A 124 (2), L11-L13, 1990. [CrossRef] [Google Scholar]
  29. M. Videm and N. Ryum, Cyclic deformation and fracture of pure aluminium polycrystals, Mater Sci Eng A 219 (1), 11-20, 1996. [CrossRef] [Google Scholar]
  30. A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity, J Mech Phys Solids 48 (8), 1565-1595, 2000. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.